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Abstract. This paper compares the statistical features of the sample of
discovered extrasolar planets with those of the secondaries in nearby spec-
troscopic binaries, in order to enable us to distinguish between the two
populations. Based on 32 planet candidates discovered until March 2000,
we find that their eccentricity and period distribution are surprisingly
similar to those of the binary population, while their mass distribution is
remarkably different. The mass distributions definitely support the idea
of two distinct populations, suggesting the planet candidates are indeed
extrasolar planets. The transition between the two populations proba-
bly occurs at 10-30 Jupiter masses. We point out a possible negative
correlation between the orbital period of the planets and the metallicity
of their parent stars, which holds only for periods less than about 100
days. These short-period systems are characterized by circular or almost
circular orbits.

1. Introduction

In the last few years we are witnessing a burst of discoveries of candidates
for extrasolar planets (for a recent review see Marcy, Cochran, & Mayor 2000,
hereafter MCM). These ’planet candidates’ were discovered by detecting small
periodic radial-velocity modulations of their parent stars, which indicate the
existence of unseen companions. The identification of the companions as planet
candidates is based solely on their inferred minimum masses, which are of the
order of a Jupiter mass (=M jyp).

This identification is based on the commonly accepted notion that planet
masses are substantially smaller than those of stars. Some works go even further
and define a planet as an object with mass smaller than 13 M j,,— the minimum
mass needed to ignite deuterium in its core. This definition goes hand in hand
with the definition of a brown dwarf as an object that does not burn hydrogen
in its core, and therefore has a mass less than about 80 Mj,,. The mass-based
definition of a planet became so popular, that some astronomers used it without
requiring a planet to orbit another star. This is reflected, for example, in the title
of a recent paper A Population of Very Young Brown Dwarfs and Free-Floating
Planets in Orion by Lucas & Roche (2000).

Obviously, we can arbitrarily adopt any definition for any term. However,
we usually expect a good definition to carry along any previous understandings
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of the term. Planets were conceived in the past as objects orbiting the Sun —
a feature completely missing from the mass definition of a planet. Actually, one
of the first works to suggest this distinction was that of Burrows et al. (1997),
who emphasized that this distinction was arbitrary for “parsing by eye the in-
formation in the(ir detailed) figures”, and they did not “advocate abandoning
the definition based on origin”.

We therefore suggest a somewhat hypothetical, open-ended definition, which
is based on two notions. The first one is indeed that planets must orbit their
parent stars. This immediately raises the question of how to distinguish be-
tween planets and low-mass secondaries in binary systems. We therefore suggest
that the definition includes a second notion, based on the seemingly accepted
paradigm that planets, including giant planets like Jupiter, were formed dif-
ferently than stars. The present picture is that planets were probably formed
by coagulation of smaller, possibly rocky, bodies, while stars were probably
formed by some kind of fragmentation of larger bodies. In other words, plan-
ets were formed by small bodies that grew larger, while stars, binary included,
were formed by fragmentation of large bodies into smaller objects. Therefore,
according to the proposed definition, a planet is a low-mass object formed dif-
ferently than a star, orbiting a much larger star. Note that this definition does
not include a priory the planet mass, a specific mass limit in particular.

The formation notion, if true, probably allows us to differentiate statisti-
cally between giant planets and low-mass secondaries. A population of planets
might show some statistical features different than the ones found in low-mass
binaries, reflecting the difference in formation history. Finding such differences
in observed samples can verify the formation aspect of the definition, which,
at this stage of the research of extrasolar planets, is still only an assumption.
Therefore, this paper adopts a purely observational approach and checks whether
such distinguishing characteristics can be found, refraining from any theoretical
discussion of their origin.

We could expect, for example, that the distribution of orbital eccentricities
of giant planets and low-mass binaries will be substantially different, because all
the solar planets have nearly circular orbits, while binaries do not (e.g., Mazeh,
Mayor, & Latham 1996). Or, we could expect the periods of planets to be
longer than 10 years, like the giant planets in the solar system. Many studies
of the newly discovered planets showed that this is not the case (e.g., MCM).
Moreover, following Heacox (1999) who based his analysis only upon 15 binaries
and a handful of planet candidates, we will show that within some reasonable
restrictions, the eccentricity and period distributions of the two samples are
surprisingly similar. On the other hand, the mass distributions of the planet
candidates and the low-mass secondaries are well separated (e.g., Marcy & But-
ler 1998), definitely suggesting the existence of two populations. At the same
time the very different mass distributions validate the original notion of mass
difference. The border zone between the two populations could be demarcated
in the near future when more data are available.
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Figure 1.  The eccentricity as a function of the orbital period for the
Galactic disk SB1s and the planet candidates.

2. Eccentricity and Period Distribution

We consider here the 32 planet candidates that were discovered until March 2000
(Schneider 2000), comparing their orbital characteristics with those of spectro-
scopic binaries. For the latter we use the results of a very large radial-velocity
study of the Carney & Latham (1987) high-proper-motion sample, which yielded
200 spectroscopic binaries (Latham et al. 2000; Goldberg et al. 2000). Goldberg
(2000) succeeded to separate statistically between the binaries of the Galactic
halo and those coming from the disk. We consider in this section only the 59
single-lined spectroscopic binaries (=SB1s) of the Galactic disk.

In Figure 1 we present the eccentricity-period relation for the two samples.
In both samples all the short-period binaries have circular or almost circular
orbits. Nevertheless, it seems as if there is some subtle difference in the way
this effect is revealed in the two samples. At the upper panel there is a clear
division; all binaries with periods shorter than 10 days are practically circular,
while binaries with longer periods show considerable eccentricities. In the planet
candidate sample we find high eccentricities, above 0.2, only with periods longer
than 50 days. Orbits with shorter periods do not have high eccentricities, al-
though some of the orbits are not completely circular. The difference between
the two samples is certainly not well established statistically, and we need many
more planet candidates to assess its reality.
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Planet Candidates vs SB1s of the Galactic Disk
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Figure 2. The eccentricity cumulative distribution of the planet can-
didates and the Galactic disk SB1s.

Apparently, some tidal interaction circularized or nearly circularized the or-
bits of the short period systems in both samples. Although the exact mechanism
is not yet clear (e.g., Zahn & Bouchet 1989, Goldman & Mazeh 1991, Goodman
& Oh 1997), the cutoff shape of the SB1s is well explained. The eccentricity
distribution of the planet candidates, if different from that of the SB1s, is more
difficult to interpret, and has probably to do with the orbital evolution that
these systems have gone through (e.g., Wiedenschilling & Marzari 1996; Lin et
al. 2000; Trilling 2000)

Next, we consider the eccentricity distribution of the uncircularized orbits
of the two samples. To do so we plot in Figure 2 the eccentricity cumulative
distribution of the two samples, with periods longer than 10 days for the SB1
sample and with periods longer than 50 days for the planet candidates. The
result, first noted by Heacox (1999) who based his analysis only upon 15 binaries,
is astounding. The two populations have practically the same distribution, at
least for most of the eccentricity range. Stepinski & Black (2000, a poster paper
in this meeting) who used Heacox small sample of binaries, and Mayor & Udry
(2000) came to similar conclusions.

In the upper panel of Figure 3 we compare the period distribution of the two
samples. The two distributions run parallel for most of the period span, which
indicates the same density distribution. To emphasize this point we exclude
binaries with period shorter than 7 days or longer than 1650 days from both
samples and plot in the lower panel the two restricted distributions, which turn
out to be the same. Moreover, as noted already by Heacox (1999), the figure
shows that the two distributions, when plotted here on a logarithmic scale follow
strictly a straight line, which indicates flat density distributions on a logarithmic
scale. Stepinski & Black (2000) came to similar conclusion.
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Figure 3. The period cumulative distribution of the planet candi-
dates and the Galactic disk SB1s. See text for the two panels.

Any paradigm that assumes the two populations were formed differently
has to explain why their eccentricity as well as period distributions are so much
alike. One might wonder are they really two separate populations. However,
any such doubt can be put to rest by considering the mass distribution, as is
done in the next section.

3. The Mass Distribution of the Planet Candidates and the Low-
Mass Secondaries

In Figure 4 we present two separate mass histograms, one of the SBls and
the other of the planet candidates. We follow, with some slight modifications,
the derivations of Mazeh, Goldberg, & Latham (1998, hereafter MGL) and of
Mazeh (1999a,b), which were done with a substantially smaller sample of planet
candidates. The detailed derivation is explained in those papers. In short, the
observed histograms are modified so they take into account two effects. The
first has to do with the unknown inclination angles of most of the systems,
which allow the observer to derive only the minimum masses of the unseen
companions. The second effect reflects the fact that the observers cannot detect
radial-velocity modulation with a too small amplitude, either because of the low
orbital inclination or because of the smallness of the secondary mass. To be able
to compare the two distributions, which are spread over more than three orders
of magnitudes, it is important to present the data on a logarithmic scale.

The last two bins of the SB1s histogram, with masses larger than 100 My,
were derived from a subsample of the high-proper-motion binaries drawn from
a sample of 420 primaries with masses higher than 0.7 M (Latham et al. 2000;
Goldberg et al. 2000). The other two bins, between 10 and 100 My, could not
be derived from that radial-velocity survey, because of lack of sensitivity. The
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Figure 4.  Corrected histograms of the extrasolar planet candidates
and the low-mass secondaries of spectroscopic binaries. Upper panel
for the SB1s. Lower panel for the planet candidates. Both scaled for a
sample of 200 stars
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histogram is based, instead, on the work of Mayor et al. (1997), who studied a
sample of 570 nearby K stars (see also Halbwachs, Mayor & Udry 1998). Mayor
et al. were kind enough to let MGL know that they have found 5 additional
binaries in that range. The two sets of binaries were drawn from samples of
different sizes. We therefore scaled both pairs of bins to a sample size of 200
systems, the number of stars included in the first phase of the planet search.

Note that the numbers of stars in the 10-30 M, bin, and even in the
30-100 M,y one, are statistically indistinguishable from zero, consistent with
the idea of a “brown-dwarf desert” (e.g., Halbwachs et al. 2000). They used
Hipparcos data and concluded that some of the systems in these bins might have
masses larger than 0.08 Mg — the stellar border line, turning these ’brown-dwarf
candidates’ into stellar companions. In any event, the secondary frequency,
which rises when moving from, say, 1000 M j,,(~ 1Mg), to 300 My, drops
down very sharply and gets to very low values at the range of 30-100 M jyp.

The other histogram includes all the published and announced planet can-
didates, until March 2000. This sample is obviously incomplete, as no research
group exhausted the planet discoveries in the sample they are following. In par-
ticular, the stars with low-amplitude variations are still being monitored so their
periodic modulation can be verified. This complicates the correction of the two
observational effects that we apply to the observed histogram. In order to pro-
ceed we choose to assume that the samples of the announced planet candidates
are complete up to 40 ms~!. Although we have no doubt that this assumption
does not represent accurately the present status of the various studies, it never-
theless enables us to estimate the selection effect and correct for it. Obviously,
we excluded from the sample HD 177830, which has an amplitude smaller than
this arbitrary threshold.
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We further assume that there are two phases of the planet candidate surveys.
At the first phase the research groups of Marcy et al. and Mayor et al. monitored
about 200 stars, out of which 8 planet candidates were found. We assumed this
phase is close to completion. The other phase includes about 1000 additional
stars, but, on the other hand, many more planets are expected to be found in
these samples, so the scaling factor of this phase is not well known. We therefore
assumed arbitrarily that the new planet candidates came from a sample of 400
stars and averaged and scaled the results of the two phases accordingly. The
results of the calculation are presented in the lower panel of the figure.

Obviously, all these approximations cannot but obscure the frequency of the
planet candidates and the exact shape of their mass distribution. This is why
we choose not to assign any error bars to the various bins. The only two goals
of the derivation of the histogram are to estimate the mass distribution slope, or
rather the direction of the slope, and the mass distribution boundaries. Although
there are still many unknown factors, we suggest that these two features of
the distribution are already clear. As concluded by many studies (e.g., Mayor
& Udry 2000) the planet candidates are not part of the low-mass tail of the
secondary mass. They compose a different population, well separated on the
mass axis, and therefore can be related to as proper planets. We find that
the planet mass distribution starts with very low values at the 30-100 My,
region, and rises steeply, even on a logarithmic scale, towards Jupiter and sub-
Jupiter mass range. Stepinski & Black (2000) got a different slope for the planet
mass distribution, probably because they took a conservative stand and did not
correct for the undetected systems.

4. Metallicity

In this section we turn our attention to the metallicity of the stars around which
the planets have been discovered. Most of these stars exhibit metallicity higher
than that found in the solar neighbourhood (Gonzalez 1997; Marcy & Butler
1998; Queloz et al. 2000; Gonzalez 2000; Butler et al. 2000). Queloz et al. (2000)
and Butler et al. (2000) further pointed out that the host stars to the “51 peg
like” planets are particularly metal-rich. In this section we further study the
dependence of the metallicity on their orbital period, a dependence plotted in
Figure 5.

Whenever available we have used metallicity derived from spectral analy-
sis of the stars, mostly from the seminal work of Gonzalez (2000). Mazeh et
al. (2000) derived the metallicity of HD 209458. Whenever such an analysis was
not available, we have used photometric metallicity derived by Giménez (2000).
The metallicities of the stars not considered by Giménez was derived by us fol-
lowing his prescription, based on the photometry of Hauck & Mermilliod (1998)
and the calibrations calculated by Crawford (1975) and Olsen (1984). Following
Giménez (2000), we did not include in the plot GJ876 and HD177830, for lack of
data. Like in Giménez (2000), HD114762 was excluded because of its extremely
low metallicity, and 55 Cnc and 14 Her because of their extremely high dc;. Ac-
tually, inclusion of the last three stars would only enhance the effect suggested
here.
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Figure 5.  The metallicity of the parent stars of the extrasolar planets
as a function of their orbital period

The figure suggests that the planet candidates with periods shorter than
about 100 days show negative correlation between the metallicity of their host
stars and their orbital period. This correlation disappears when we consider the
planet candidates with longer periods. Although the effect is still not established
to high statistical significance, we find this conjecture intriguing, as Section 2
finds a division between the almost circular planets and the eccentric ones at
about the same period.

5. Conclusion

The logarithmic mass distribution derived here shows that the planet candidates
are indeed a separate population, probably formed in a different way than the
secondaries in spectroscopic binaries. Surprisingly the eccentricity and period
distribution, with some restriction, are very much the same.

Furthermore, the two period distributions follow strictly a straight line.
This indicates flat density distributions on a logarithmic scale, inconsistent with
the Duquennoy and Mayor (1991) log-Gaussian distribution. Interestingly, flat
logarithmic distribution is the only scale-free distribution, and could be argued
to be the most simple distribution. Maybe the two populations were formed
by two different mechanisms that still have this free-scale feature in common
(Heacox 1999).

In the last section we present some evidence that the orbital period of the
planets anti-correlates with the metallicity of their host stars. The aim of this
section is to draw the community attention to this possible intriguing division,
in order to fertilize further discussion. One interpretation of this possible effect
is that the planets polluted the stellar atmospheres with heavy atoms from
the early-phase accretion disks when they migrated towards the star. Another
interpretation is that the stars with higher metallicities tend to form planets
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more easily. The metallicity can further influence the distance at which the
planet is formed or the distance into which the planet migrates. In any case, if
this effect is confirmed, it is interesting that it holds only for the close-in planets,
for which we do not find orbits with large eccentricities.

Obviously, we need many more planet detections to confirm each of the
features suggested here . Hopefully, the new high-precision surveys now in high
gear will supply many more planets in the near future, unraveling the still hidden
characteristics of the extrasolar planets.
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