Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T14:47:54.288Z Has data issue: false hasContentIssue false

Bifurcations and Symmetry-Breaking in Simple Models of Nonlinear Dynamos

Published online by Cambridge University Press:  19 July 2016

N.O. Weiss*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge Cambridge CB3 9EW, U.K.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low-order models of nonlinear dynamos can be used to investigate generic properties of more realistic mean field dynamos. Reducing the partial differential equations to a set of ordinary differential equations makes it possible to explore the bifurcation structure in considerable detail and to compute unstable solutions as well as ones that are stable. Complicated time-dependent behaviour is typically associated with a homoclinic or heteroclinic bifurcation. Destruction of periodic orbits at saddles or saddle-foci gives rise to Lorenz-like or Shil'nikov-like chaotic oscillations, while destruction of a quasiperiodic orbit leads to aperiodically modulated cycles. Changes in spatial symmetry can also be investigated. The interaction between solutions (steady or periodic) with dipole and quadrupole symmetry gives rise to a complicated bifurcation structure, with several recognizably different mixed-mode solutions; similar behaviour has also been found in spherical dynamo models. These results have implications for the expected behaviour of stellar dynamos.

Type
6. General Aspects of Dynamo Theory
Copyright
Copyright © Kluwer 1993 

References

Allan, D.W.: 1958, Nature 182, 469 Google Scholar
Allan, D.W.: 1962, Math. Proc. Cam. Phil. Soc. 58, 671 CrossRefGoogle Scholar
Brandenburg, A., Krause, F., Meinel, R., Moss, D. and Tuominen, I.: 1989, Astron. Astrophys. 213, 411 Google Scholar
Bullard, E.C.: 1978, in Jorna, S., ed(s)., Topics in nonlinear dynamics , American Institute of Physics: New York, 373 Google Scholar
Cartwright, M.L. and Littlewood, J.E.: 1945, J. Lond. Math. Soc. 20, 180 CrossRefGoogle Scholar
Cook, A.E. and Roberts, P.H.: 1970, Math. Proc. Cam. Phil. Soc. 68, 547 Google Scholar
Feudel, U., Jansen, W. and Kurths, J.: 1992, J. Bifurcation and Chaos , in press Google Scholar
Gubbins, D. and Zhang, K.: 1992, Phys. Earth. Planet. Int. , in press Google Scholar
Guckenheimer, J.: 1981, in Swinney, H.L. and Gollub, J.P., ed(s)., Hydrodynamic instabilities and the transition to turbulence , Springer: Berlin, 215 Google Scholar
Guckenheimer, J. and Holmes, P.: 1983, Nonlinear oscillations, dynamical systems and bifurcations of vector fields , Springer: New York Google Scholar
Jennings, R.L.: 1991, Geophys. Astrophys. Fluid. Dyn 57, 147 Google Scholar
Jennings, R.L. and Weiss, N.O.: 1991, Mon. Not. Roy. Astron. Soc. 252, 249 Google Scholar
Jones, C.A., Weiss, N.O. and Cattaneo, F.: 1985, Physica 14D, 161 Google Scholar
Kirk, V.: 1991, Phys. Lett. A 154, 243 Google Scholar
Kirk, V.: 1993, Nonlinearity , submitted Google Scholar
Knobloch, E.: 1981, Phys. Lett. A 82, 439 Google Scholar
Knobloch, E.: 1993, in Proctor, M.R.E. and Gilbert, A. D., ed(s)., Theory of solar and planetary dynamos: introductory lectures , Cambridge University Press: Cambridge,Google Scholar
Knobloch, E., Proctor, M.R.E. and Weiss, N.O.: 1992, J. Fluid Mech. 239, 273 Google Scholar
Krause, F. and Roberts, P.H.: 1981, Adv. Space Res. 1, 231 Google Scholar
Langford, W.F.: 1983, in Barenblatt, G. I., Iooss, G. and Joseph, D. D., ed(s)., Nonlinear dynamics and turbulence , Pitman: London, 215 Google Scholar
Lorenz, E.N.: 1963, J. Atmos. Sci. 20, 130 2.0.CO;2>CrossRefGoogle Scholar
Malkus, W.V.R.: 1972, EOS, Trans. Amer. Geophys. Union 53, 617 Google Scholar
Moss, D., Tuominen, I. and Brandenburg, A.: 1990, Astron. Astrophys. 228, 284 Google Scholar
Noyes, R.W., Weiss, N.O. and Vaughan, A.H.: 1984, Astrophys. J. 287, 769 Google Scholar
Rädler, K.-H., Wiedemann, E., Brandenburg, A., Meinel, R. and Tuominen, I.: 1990, Astron. Astrophys. 239, 413 Google Scholar
Robbins, K.A.: 1977, Math. Proc. Cam. Phil. Soc. 82, 309 Google Scholar
Schmalz, S. and Stix, M.: 1991, Astron. Astrophys. 245, 654 Google Scholar
Schmitt, D. and Schüssler, M.: 1989, Astron. Astrophys. 223, 343 Google Scholar
Shil'nikov, L.P.: 1965, Sov. Math. Dokl. 6, 163 Google Scholar
Smale, S.: 1963, in Cairns, S. S., ed(s)., Differential and combinatorial topology , Princeton University Press: Princeton, 63 Google Scholar
Smale, S.: 1967, Bull. Am. Math. Soc. 73, 747 CrossRefGoogle Scholar
Sparrow, C.: 1982, The Lorenz equations: bifurcations, chaos and strange attractors , Springer: New York CrossRefGoogle Scholar
Stix, M.: 1972, Astron. Astrophys. 20, 9 Google Scholar
Weiss, N.O., Cattaneo, F. and Jones, C.A.: 1984, Geophys. Astrophys. Fluid. Dyn. 30, 305 Google Scholar
Wiggins, S.: 1988, Global bifurcations and chaos , Springer: New York Google Scholar
Zel'dovich, Ya.B., Ruzmaikin, A.A. and Sokoloff, D.D.: 1983, Magnetic fields in astrophysics , Gordon and Breach: London Google Scholar