Published online by Cambridge University Press: 18 July 2016
The increase of cosmic radiation on 23 February 1956 by solar radiation exhibited in the first minutes a high peak at European stations that were lying in direct impact zones for particles coming from a narrow angle near the sun, whilst other stations received no radiation for a further time of 10 minutes and more. An hour later all stations in intermediate and high latitudes recorded solar radiation in a distribution as would be expected if this radiation fell into the geomagnetic field in a fairly isotropic distribution. The intensity of the solar component decreased at this time at all stations according to the same hyperbolic law (~t–2).
It is shown, that this decreasing law, as well as the increase of the impact zones on the earth, can be understood as the consequence of an interstellar magnetic field in which the particles were running and bent after their ejection from the sun.
Considering the bending in the earth's magnetic field, one can estimate the direction of this field from the times of the very beginning of the increase in Japan and at high latitudes. The lines of magnetic force come to the earth from a point with astronomical co-ordinates near 12·00, 30° N. This implies that within the low accuracy they have the direction of the galactic spiral arm in which we live. The field strength comes out to be about 0·7 × 10–6 gauss. There is a close agreement with the field, that Fermi and Chandrasekhar have derived from Hiltner's measurements of the polarization of starlight and the strength of which they had estimated to the same order of magnitude.