Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T06:03:32.990Z Has data issue: false hasContentIssue false

Visualization of molecular processes associated with seed dormancy and germination using MapMan

Published online by Cambridge University Press:  04 February 2011

Ronny V.L. Joosen*
Affiliation:
Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PBWageningen, The Netherlands
Wilco Ligterink
Affiliation:
Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PBWageningen, The Netherlands
Bas J. W. Dekkers
Affiliation:
Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PBWageningen, The Netherlands Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CHUtrecht, The Netherlands
Henk W.M. Hilhorst
Affiliation:
Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PBWageningen, The Netherlands
*
*Correspondence Email: [email protected]

Abstract

Seed dormancy and germination involve the concerted operation of molecular and biochemical programmes. It has become feasible to study these processes in great detail, using the current methods for transcriptome, proteome and metabolome analysis. Yet, the large amounts of data generated by these methods are often dazzling and demand efficient tools for data visualization. We have used the freely available PageMan/MapMan package (http://MapMan.gabipd.org) to visualize transcriptome and metabolome changes in Arabidopsis thaliana seeds during dormancy and germination. Using this package we developed two seed-specific MapMan pathways, which efficiently capture the most important molecular processes in seeds. The results demonstrated the usefulness of the PageMan/MapMan package for seed research.

Type
Technical Update
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baerenfaller, K., Grossmann, J., Grobei, M.A., Hull, R., Hirsch-Hoffmann, M., Yalovsky, S., Zimmermann, P., Grossniklaus, U., Gruissem, W. and Baginsky, S. (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320, 938941.CrossRefGoogle ScholarPubMed
Bassel, G.W., Fung, P., Chow, T.F., Foong, J.A., Provart, N.J. and Cutler, S.R. (2008) Elucidating the germination transcriptional program using small molecules. Plant Physiology 147, 143155.CrossRefGoogle ScholarPubMed
Bewley, J.D. (1997) Seed germination and dormancy. Plant Cell 9, 10551066.CrossRefGoogle ScholarPubMed
Blasing, O.E., Gibon, Y., Gunther, M., Hohne, M., Morcuende, R., Osuna, D., Thimm, O., Usadel, B., Scheible, W.-R. and Stitt, M. (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17, 32573281.CrossRefGoogle Scholar
Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Vilo, J., Abeygunawardena, N., Holloway, E., Kapushesky, M., Kemmeren, P., Lara, G.G., Oezcimen, A., Rocca-Serra, P. and Sansone, S.A. (2003) ArrayExpress – A public repository for microarray gene expression data at the EBI. Nucleic Acids Research 31, 6871.CrossRefGoogle ScholarPubMed
Cadman, C.S.C., Toorop, P.E., Hilhorst, H.W.M. and Finch-Savage, W.E. (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. The Plant Journal 46, 805822.CrossRefGoogle ScholarPubMed
Carrera, E., Holman, T., Medhurst, A., Peer, W., Schmuths, H., Footitt, S., Theodoulou, F.L. and Holdsworth, M.J. (2007) Gene expression profiling reveals defined functions of the ATP-binding cassette transporter COMATOSE late in phase II of germination. Plant Physiology 143, 16691679.CrossRefGoogle ScholarPubMed
De Vos, R.C.H., Moco, S., Lommen, A., Keurentjes, J.J.B., Bino, R.J. and Hall, R.D. (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols 2, 778791.CrossRefGoogle ScholarPubMed
Fait, A., Angelovici, R., Less, H., Ohad, I., Urbanczyk-Wochniak, E., Fernie, A.R. and Galili, G. (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiology 142, 839854.CrossRefGoogle ScholarPubMed
Finch-Savage, W.E., Cadman, C.S.C., Toorop, P.E., Lynn, J.R. and Hilhorst, H.W.M. (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. The Plant Journal 51, 6078.CrossRefGoogle ScholarPubMed
Finkelstein, R.R., Gampala, S.S. and Rock, C.D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14 (Suppl.), S15S45.CrossRefGoogle ScholarPubMed
Finkelstein, R., Reeves, W., Ariizumi, T. and Steber, C. (2008) Molecular aspects of seed dormancy. Annual Review of Plant Biology 59, 387415.CrossRefGoogle ScholarPubMed
Franklin, K.A. and Quail, P.H. (2010) Phytochrome functions in Arabidopsis development. Journal of Experimental Botany 61, 1124.CrossRefGoogle ScholarPubMed
Hennig, L., Menges, M., Murray, J.A. and Gruissem, W. (2003) Arabidopsis transcript profiling on Affymetrix GeneChip arrays. Plant Molecular Biology 53, 457465.CrossRefGoogle ScholarPubMed
Holdsworth, M.J., Bentsink, L. and Soppe, W.J.J. (2008a) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179, 3354.CrossRefGoogle ScholarPubMed
Holdsworth, M.J., Finch-Savage, W.E., Grappin, P. and Job, D. (2008b) Post-genomics dissection of seed dormancy and germination. Trends in Plant Science 13, 713.CrossRefGoogle ScholarPubMed
Huang, X., Schmitt, J., Dorn, L., Griffith, C., Effgen, S., Takao, S., Koornneef, M. and Donohue, K. (2010) The earliest stages of adaptation in an experimental plant population: Strong selection on QTLS for seed dormancy. Molecular Ecology 19, 13351351.CrossRefGoogle Scholar
Joosen, R.V., Ligterink, W., Hilhorst, H.W. and Keurentjes, J.J. (2009) Advances in genetical genomics of plants. Current Genomics 10, 540549.CrossRefGoogle ScholarPubMed
Kucera, B., Cohn, M.A. and Leubner-Metzger, G. (2005) Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15, 281307.CrossRefGoogle Scholar
Liu, P.P., Koizuka, N., Homrichhausen, T.M., Hewitt, J.R., Martin, R.C. and Nonogaki, H. (2005) Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. The Plant Journal 41, 936944.CrossRefGoogle ScholarPubMed
Meyer, R.C., Steinfath, M., Lisec, J., Becher, M., Witucka-Wall, H., Törjék, O., Fiehn, O., Eckardt, Ä., Willmitzer, L., Selbig, J. and Altmann, T. (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 104, 47594764.CrossRefGoogle ScholarPubMed
Moyers, B.T. and Kane, N.C. (2010) The genetics of adaptation to novel environments: Selection on germination timing in Arabidopsis thaliana. Molecular Ecology 19, 12701272.CrossRefGoogle ScholarPubMed
Müller, K., Tintelnot, S. and Leubner-Metzger, G. (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physioogy 47, 864877.CrossRefGoogle ScholarPubMed
Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y. and Nambara, E. (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. The Plant Journal 41, 697709.CrossRefGoogle ScholarPubMed
Nonogaki, H. (2006) Seed germination – the biochemical and molecular mechanisms. Breeding Science 56, 93105.CrossRefGoogle Scholar
Nonogaki, H., Chen, F. and Bradford, K.J. (2007) Mechanisms and genes involved in germination sensu stricto. pp. 264304 in Bradford, K.J.; Nonogaki, H. (Eds) Seed development, dormancy and germination. Annual Plant Reviews, Vol. 27. Oxford, Wiley-Blackwell.CrossRefGoogle Scholar
Penfield, S., Li, Y., Gilday, A.D., Graham, S. and Graham, I.A. (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18, 18871899.CrossRefGoogle ScholarPubMed
Penfield, S., Pinfield-Wells, H. and Graham, I.A. (2007) Lipid metabolism in seed dormancy. pp. 133152 in Bradford, K.J.; Nonogaki, H. (Eds) Seed development, dormancy and germination. Annual Plant Reviews, Vol. 27. Oxford, Wiley-Blackwell.CrossRefGoogle Scholar
Rajjou, L., Gallardo, K., Debeaujon, I., Vandekerckhove, J., Job, C. and Job, D. (2004) The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiology 134, 15981613.CrossRefGoogle ScholarPubMed
Rensink, W.A. and Hazen, S.P. (2006) Statistical issues in microarray data analysis. Methods Molecular Biology 323, 359366.Google ScholarPubMed
Seifert, G.J. and Roberts, K. (2007) The biology of arabinogalactan proteins. Annual Review Plant Biology 58, 137161.CrossRefGoogle ScholarPubMed
Sreenivasulu, N., Usadel, B., Winter, A., Radchuk, V., Scholz, U., Stein, N., Weschke, W., Strickert, M., Close, T.J., Stitt, M., Graner, A. and Wobus, U. (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiology 146, 17381758.CrossRefGoogle ScholarPubMed
The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796815.CrossRefGoogle Scholar
Theodoulou, F.L., Job, K., Slocombe, S.P., Footitt, S., Holdsworth, M., Baker, A., Larson, T.R. and Graham, I.A. (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiology 137, 835840.CrossRefGoogle ScholarPubMed
Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Selbig, J., Müller, L.A., Rhee, S.Y. and Stitt, M. (2004) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal 37, 914939.CrossRefGoogle ScholarPubMed
Toufighi, K., Brady, S.M., Austin, R., Ly, E. and Provart, N.J. (2005) The botany array resource: e-Northerns, expression angling, and promoter analyses. The Plant Journal 43, 153163.CrossRefGoogle ScholarPubMed
Usadel, B., Nagel, A., Steinhauser, D., Gibon, Y., Blasing, O.E., Redestig, H., Sreenivasulu, N., Krall, L., Hannah, M.A., Poree, F., Fernie, A.R. and Stitt, M. (2006) PageMan: an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics 7, 535.CrossRefGoogle ScholarPubMed
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V. and Provart, N.J. (2007) An ‘Electronic Fluorescent Pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2, e718.CrossRefGoogle ScholarPubMed
Zhou, X. and Su, Z. (2007) EasyGO: Gene Ontology-based annotation and functional enrichment analysis tool for agronomical species. BMC Genomics 8, 246.CrossRefGoogle ScholarPubMed
Zimmermann, P., Hennig, L. and Gruissem, W. (2005) Gene-expression analysis and network discovery using Genevestigator. Trends in Plant Science 10, 407409.CrossRefGoogle ScholarPubMed
Supplementary material: File

Joosen Supplementary Material

Joosen Supplementary Table 01

Download Joosen Supplementary Material(File)
File 4.7 MB
Supplementary material: File

Joosen Supplementary Material

Joosen Supplementary Table 02

Download Joosen Supplementary Material(File)
File 2.8 MB
Supplementary material: Image

Joosen Supplementary Material

Joosen Supplementary Graphic

Download Joosen Supplementary Material(Image)
Image 867.2 KB