Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T06:13:26.017Z Has data issue: false hasContentIssue false

Seed oil content and fatty acid profiles of five Euphorbiaceae species from arid regions in Argentina with potential as biodiesel source

Published online by Cambridge University Press:  29 November 2010

Adriana Aranda-Rickert
Affiliation:
Laboratorio de Micología y Botánica, Centro Regional de Investigaciones Científicas y Transferencia Tecnológica (CRILAR), Mendoza s/n, 5301, Anillaco, La Rioja, Argentina
Laura Morzán
Affiliation:
Instituto Nacional de Tecnología Industrial (INTI), La Rioja, Argentina
Sebastián Fracchia*
Affiliation:
Laboratorio de Micología y Botánica, Centro Regional de Investigaciones Científicas y Transferencia Tecnológica (CRILAR), Mendoza s/n, 5301, Anillaco, La Rioja, Argentina
*
*Correspondence Fax: +54 3827 494231 Email: [email protected]

Abstract

Five Euphorbiaceae species (Jatropha macrocarpa, J. hieronymi, J. excisa, Cnidoscolus tubulosus and Manihot guaranitica) were analysed for seed oil content and fatty acid profiles in order to evaluate their potential as sources of biodiesel. The five species are perennial shrubs adapted to arid and semi-arid environments of north-western Argentina. The seed oil content for all species ranged from 27.9 to 38.7% by dry weight. Fatty acid composition consisted mainly of linolenic, myristic, palmitic, stearic, arachidic, oleic and linoleic acids, with linoleic and oleic acid being the most abundant. Among the five species analysed, J. macrocarpa has the best potential to be used as a biodiesel source. The average total seed oil content (35.8%) and a high value of oleic acid (27.3%) together with the lowest values of linoleic acid (55.8%) make this species a promising crop as a source of biodiesel in arid and semi-arid regions.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aranda-Rickert, A. and Fracchia, S. (2010) Diplochory in two Jatropha (Euphorbiaceae) species of the Monte Desert of Argentina. Austral Ecology 35, 226235.CrossRefGoogle Scholar
Banerji, R., Chowdhurry, A.R., Misra, G., Sudarsanam, G., Verma, S.C. and Srivastava, G.S. (1985) Jatropha seed oils for energy. Biomass 8, 277282.CrossRefGoogle Scholar
Barboza, G.E., Cantero, J.J., Nuñez, C. and Ariza Espinar, L. (2006) Flora medicinal de la provincia de Córdoba (Argentina). Córdoba, Editorial Museo Botánico Córdoba.Google Scholar
Benjelloun-Mlayah, B., De López, S. and Delmas, M. (1997) Oil and paper pulps from Cynara cardunculus: preliminary results. Industrial Crops and Products 6, 233236.CrossRefGoogle Scholar
Brew, C.R., O'Dowd, D.J. and Rae, I.D. (1989) Seed dispersal by ants: behaviour-releasing compounds in elaiosomes. Oecologia 80, 480489.CrossRefGoogle ScholarPubMed
Cardone, M., Mazzoncini, M., Menini, S., Rocco, V., Senatore, A., Seggiani, M. and Vitolo, S. (2003) Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass and Bioenergy 25, 623636.CrossRefGoogle Scholar
Font, F. (2003) Las especies del género Jatropha L. (Euphorbiaceae, Crotonoideae) en Argentina. Revista del Círculo de Coleccionistas de Cactus y Crasas de la República Argentina 2, 420.Google Scholar
Francis, G., Edinger, R. and Becker, K. (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Natural Resources Forum 29, 1224.CrossRefGoogle Scholar
Harrington, K.J. (1986) Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass 9, 117.CrossRefGoogle Scholar
InfoStat (2008) Universidad Nacional de Córdoba. Available athttp://www.infostat.com.ar (accessed 9 October 2009).Google Scholar
Jasso de Rodriguez, D., Phillips, B.S., Rodriguez-García, R. and Angulo-Sánchez, J.L. (2002) Grain yield and fatty acid composition of sunflower seed for cultivars developed under dry land conditions. pp. 139142in Janick, J.; Whipkey, A. (Eds) Trends in new crops and new uses. Alexandria, ASHS Press.Google Scholar
Jones, N. and Miller, J.H. (1992) Jatropha curcas: a multipurpose species for problematic sites. Land resourcers Series No. 1. Washington DC, The World Bank.Google Scholar
Jongschaap, R.E.E., Corré, W.J., Bindraban, P.S. and Brandenburg, W.A. (2007) Claims and facts on Jatropha curcas L.: Global Jatropha curcas evaluation, breeding and propagation programme. Report 158, Plant Research International BV, Wageningen and Stichting Het Groene Woudt, Laren, The Netherlands.Google Scholar
Kandpal, J.B. and Madan, M. (1995) Jatropha curcas: a renewable source of energy for meeting future energy needs. Renewable Energy 6, 159160.CrossRefGoogle Scholar
King, A.J., He, W., Cuevas, J.A., Freudenberger, M., Ramiaramanana, D. and Graham, I.A. (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. Journal of Experimental Botany 60, 28972905.CrossRefGoogle ScholarPubMed
Kleiman, R., Smith, C.R., Yates, S.G. and Jones, Q. (1965) Search for new industrial oils. XII. Fifty-eight Euphorbiaceae oils, including one rich in vernolic acid. Journal of the American Oil Chemists' Society 42, 169172.CrossRefGoogle Scholar
Knothe, G. (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology 86, 10591070.CrossRefGoogle Scholar
Lourteig, A. and O'Donell, C. (1943) Euphorbiaceae argentinae. Lilloa 9, 105152.Google Scholar
Makkar, H.P.S., Becker, K., Sporer, F. and Wink, M. (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. Journal of Agricultural and Food Chemistry 45, 31523157.CrossRefGoogle Scholar
Masjuki, H. (1993) Biofuel as diesel fuel alternative: an overview. International Journal of Heat and Mass Transfer 15, 293304.Google Scholar
Mayworm, M.A.S., Do Nascimento, A.S. and Salatino, A. (1998) Seeds of species from the ‘caatinga’: proteins, oils and fatty acid contents. Revista Brasileira de Botânica 21, 3.Google Scholar
Morello, J. (1958) La provincia fitogeográfica del monte. Opera Lilloana 2, 11155.Google Scholar
Openshaw, K. (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass and Energy 19, 115.CrossRefGoogle Scholar
Pramanik, K. (2003) Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renewable Energy 28, 239248.CrossRefGoogle Scholar
Rogers, D. and Appan, S. (1973) Manihot and Manihotoides (Euphorbiaceae). pp. 78201in Flora Neotropica (Monograph No. 13). New York, Hefner Press.Google Scholar
Spaan, W.P., Bodnár, F., Idoe, O. and de Graaf, J. (2004) Implementation of contour vegetation barriers under farmer conditions in Burkina Faso and Mali. Quarterly Journal of International Agriculture 43, 2138.Google Scholar
Vilas Ghadge, S. and Raheman, H. (2005) Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy 28, 601605.CrossRefGoogle Scholar