Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T04:36:11.821Z Has data issue: false hasContentIssue false

Morphology, anatomy and germination response of heteromorphic achenes of Anthemis chrysantha J. Gay (Asteraceae), a critically endangered species

Published online by Cambridge University Press:  05 August 2011

Mayra Aguado
Affiliation:
Departamento de Producción Vegetal, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
Juan J. Martínez-Sánchez*
Affiliation:
Departamento de Producción Vegetal, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
José Reig-Armiñana
Affiliation:
Laboratorio ‘Julio Iranzo’ de Anatomía Vegetal, Jardín Botánico de la Universidad de Valencia, C/ Quart, 80, 46008 Valencia, Spain
Francisco J. García-Breijo
Affiliation:
Laboratorio ‘Julio Iranzo’ de Anatomía Vegetal, Jardín Botánico de la Universidad de Valencia, C/ Quart, 80, 46008 Valencia, Spain Departamento de Ecosistemas Agroforestales, Universidad Politécnica de Valencia, Camino de Vera s/n. 46022, Valencia, Spain
José A. Franco
Affiliation:
Departamento de Producción Vegetal, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
María J. Vicente
Affiliation:
Departamento de Producción Vegetal, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
*
*Correspondence Fax: +34 968325433 Email: [email protected]

Abstract

This study demonstrates that Anthemis chrysantha, a ‘Critically Endangered’ annual plant, produces two morphs of achenes: white and dark achenes, which differ in size, mass, anatomy and germination behaviour. Fresh white achenes germinated at all temperatures assayed from 10 to 25°C in both continuous darkness and 12-h photoperiod, ranging between 24% at 25°C in darkness and 89% at 12/20°C in light, whereas fresh dark achenes did not germinate under any temperature or light conditions. To identify differences in dormancy type between the two morphs, germination of dry-stored achenes, and achenes stratified at 5 or 25°C for 2 months were tested in both darkness and light at 5, 15 and 12/20°C for dry-stored and warm-stratified (25°C) achenes; and at 15, 25 and 12/20°C for cold-stratified (5°C) achenes. Of the white achenes, 90% germinated during the cold stratification period. In general, dry storage and warm stratification did not increase germination compared to fresh achenes. However, dark achenes did not germinate under any conditions. Dark achene dormancy was only broken by mechanical scarification or by excising the embryo (germination reached 71%). An anatomical study showed that the mesocarp of dark achenes had no intercellular spaces and was much thicker and stronger than that of white achenes, making the entry of water difficult, and also preventing germination by mechanical restriction. This study demonstrated that dormancy in the dark achenes is likely caused by the thickness of their pericarp, physically impeding germination and hampering imbibition of water.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G.A. (1974) The evolution of weeds. Annual Review of Ecology and Systematics 4, 124.CrossRefGoogle Scholar
Baskin, J.M. and Baskin, C.C. (1998) Seeds. Ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Baskin, J.M. and Baskin, C.C. (2000) Seed germination ecology of Lesquerella lyrata Rollins (Brassicaceae), a federally threatened winter annual. Natural Areas Journal 20, 159165.Google Scholar
Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.CrossRefGoogle Scholar
Beneke, K., von Teichman, I., van Rooyen, M.W. and Theron, G.K. (1992) Fruit polymorphism in ephemeral species of Naquamaland. I. Anatomic differences between polymorphic diaspores of two Dimorphotheca species. South African Journal of Botany 58, 448455.CrossRefGoogle Scholar
Beneke, K., van Rooyen, M.W., Theron, G.K. and van de Venter, H.A. (1993) Fruit polymorphism in ephemeral species of Naquamaland. III. Germination differences between polymorphic diaspores. Journal of Arid Environments 24, 333344.CrossRefGoogle Scholar
BORM (2003) Decreto n° 50/2003, de 30 de mayo por el que se crea el Catálogo Regional de Flora Silvestre Protegida de la Región de Murcia. Boletín Oficial de la Región de Murcia 131, 1161511624.Google Scholar
Brändel, M. (2004) Dormancy and germination of heteromorphic achenes of Bidens frondosa. Flora 199, 228233.CrossRefGoogle Scholar
Brenchley, J.L. and Probert, R.J. (1998) Seed germination responses to some environmental factors in the sea grass Zostera capricorni from eastern Australia. Aquatic Botany 62, 177188.CrossRefGoogle Scholar
Chehregani, A. and Mahanfar, N. (2007) Achene micro-morphology of Anthemis (Asteraceae) and its allies in Iran with emphasis on systematics. International Journal of Agriculture & Biology 9, 486488.Google Scholar
Copete, M.A., Herranz, J.M. and Ferrandis, P. (2009) Seed germination ecology of the endemic Iberian winter annuals Iberis pectinata and Ziziphora aragonensis. Seed Science Research 19, 155169.CrossRefGoogle Scholar
Ellis, J.F. and Ilnicki, R.D. (1968) Seed dormancy in corn chamomile. Weed Science 16, 111113.CrossRefGoogle Scholar
Greene, D.F. and Johnson, E.A. (1989) A model of wind dispersal of winged or plumed seeds. Ecology 70, 339347.CrossRefGoogle Scholar
Grime, J.P. (1979) Plant strategies and vegetation processes. New York, Wiley and Sons.Google Scholar
Gutterman, Y. (1990) Seed dispersal by rain (ombrohydrochory) in some of the flowering desert plants in the deserts of Israel and the Sinai peninsula. Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg 23b, 841852.Google Scholar
Gutterman, Y. (1993) Seed germination in desert plants. Adaptations of desert organisms. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Harper, J.L. (1977) Population biology of plants. London, UK, Academic Press.Google Scholar
Imbert, E. (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics 5, 1336.CrossRefGoogle Scholar
Imbert, E., Escarré, J. and Lepart, J. (1996) Achene dimorphism and among-population variation in Crepis sancta (Asteraceae). International Journal of Plant Sciences 157, 309315.CrossRefGoogle Scholar
Imbert, E., Escarré, J. and Lepart, J. (1999) Differentiation among populations for life history, morphology, head traits, and achene morph proportions in the heterocarpic species Crepis sancta (L.) Bornm. (Asteraceae). International Journal of Plant Sciences 160, 543552.CrossRefGoogle Scholar
Johansen, D.A. (1940) Plant microtechnique. New York, McGraw-Hill.Google Scholar
Khan, M.A. and Gulzar, S. (2003) Light, salinity, and temperature effects on the seed germination of perennial grasses. American Journal of Botany 90, 131134.CrossRefGoogle ScholarPubMed
Kreitschitz, A. and Vallés, J. (2007) Achene morphology and slime structure in some taxa of Artemisia L. and Neopallasia L. (Asteraceae). Flora 202, 570580.CrossRefGoogle Scholar
McEvoy, P.B. (1984) Dormancy and dispersal in dimorphic achenes of tansy ragwort, Senecio jacobaea L. (Compositae). Oecologia 61, 160168.CrossRefGoogle ScholarPubMed
Milberg, P., Andersson, L. and Thompson, K. (2000) Large-seeded species are less dependent on light for germination than small-seeded. Seed Science Research 10, 99104.CrossRefGoogle Scholar
Mohamed-Yasseen, Y., Barringer, S.A., Splittstoesser, W.A. and Costanza, S. (1994) The role of seed coat in seed viability. Botanical Review 60, 426439.CrossRefGoogle Scholar
Negbi, M. and Tamari, B. (1963) Germination of chlorophyllous and achlorophyllous seeds of Salsola volkensii and Aellenia autrani. Israel Journal of Botany 12, 124135.Google Scholar
Nikolaeva, M.G. (1977) Factors controlling the seed dormancy pattern. pp. 5174 in Khan, A.A. (Ed.) The physiology and biochemistry of seed dormancy and germination. New York, North-Holland Publishing Company.Google Scholar
Oberprieler, C. (2001) Phylogenetic relationships in Anthemis L. (Compositae, Anthemideae) based on nrDNA ITS sequence variation. Taxon 50, 745762.CrossRefGoogle Scholar
Pandey, K.K. (1960) Evolution of gametophyte and sporophyte systems of self-incompatibility in angiosperms. Evolution 14, 98115.CrossRefGoogle Scholar
Porras, R. and Muñoz, J.M. (2000) Achene heteromorphism in the cleistogamous species Centaurea melitensis. Acta Oecologica 21, 231243.CrossRefGoogle Scholar
Rashid, I., Reshi, Z., Allaie, R.R. and Wafai, B.A. (2007) Germination ecology of invasive alien Anthemis cotula helps it synchronise its successful recruitment with favourable habitat conditions. Annals of Applied Biology 150, 361369.CrossRefGoogle Scholar
Rocha, O.J. (1996) The effects of achene heteromorphism on the dispersal capacity of Bidens pilosa. International Journal of Plant Sciences 157, 316322.CrossRefGoogle Scholar
Ruzin, S. (1999) Plant microtechnique and microscopy. New York, Oxford University Press.Google Scholar
Sánchez, P., Carrión, M.Á. and Hernández, A. (2004) Anthemis chrysantha J. Gay. pp. 136137 in Bañares, Á.; Blanca, G.; Güemes, J.; Moreno, J.C.; Ortiz, S. (Eds) Atlas y libro rojo de la flora vascular amenazada de España. Taxones prioritarios. Madrid, Dirección General de Conservación de la Naturaleza.Google Scholar
Schütz, W., Milberg, P. and Lamont, B.B. (2002) Seed dormancy, after-ripening and light requirements of four annual Asteraceae in south-western Australia. Annals of Botany 90, 707714.CrossRefGoogle ScholarPubMed
Silvertown, J.W. and Doust, J.L. (1993) Introduction to plant population biology. Oxford, Blackwell.Google Scholar
Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26, 3143.CrossRefGoogle ScholarPubMed
Sun, H.Z., Lu, J.J., Tan, D.Y., Baskin, J.M. and Baskin, C.C. (2009) Dormancy and germination characteristics of the trimorphic achenes of Garhadiolus papposus (Asteraceae), an annual ephemeral from the Junggar Desert, China. South African Journal of Botany 75, 537545.CrossRefGoogle Scholar
Tanowitz, B.D., Salopek, P.F. and Mahall, B.E. (1987) Differential germination of ray and disc achenes in Hemizonia increscens (Asteraceae). American Journal of Botany 74, 303312.CrossRefGoogle Scholar
Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M. and Webb, A. (1980) Flora Europaea. Vol. V. Cambridge, UK, Cambridge University Press.Google Scholar
Venable, D.L. (1985) The evolutionary ecology of seed heteromorphism. American Naturalist 126, 577595.CrossRefGoogle Scholar
Venable, D.L., Burquez, A., Corral, G., Morales, E. and Espinosa, F. (1987) The ecology of seed heteromorphism in Heterosperma pinnatum in central Mexico. Ecology 68, 6576.CrossRefGoogle Scholar