Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T04:55:54.913Z Has data issue: false hasContentIssue false

Seed germination and survival of the endangered psammophilous Rouya polygama (Apiaceae) in different light, temperature and NaCl conditions

Published online by Cambridge University Press:  16 September 2014

Andrea Santo*
Affiliation:
Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, V.le S. Ignazio da Laconi 11-13, 09123, Cagliari, Italy
Efisio Mattana
Affiliation:
Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, V.le S. Ignazio da Laconi 11-13, 09123, Cagliari, Italy Seed Conservation Department, Royal Botanic Gardens of Kew, UK
Laetitia Hugot
Affiliation:
Conservatoire Botanique National de Corse, Office de l'Environnement de la Corse, 14, Avenue Jean Nicoli, 20250, Corte, Corsica, France
Paula Spinosi
Affiliation:
Conservatoire Botanique National de Corse, Office de l'Environnement de la Corse, 14, Avenue Jean Nicoli, 20250, Corte, Corsica, France
Gianluigi Bacchetta
Affiliation:
Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, V.le S. Ignazio da Laconi 11-13, 09123, Cagliari, Italy
*
*Correspondence Fax: +39 070 6753509 E-mail: [email protected]

Abstract

Rouya polygama (Apiaceae) is an endangered Mediterranean species of great phytogeographical and ecological interest, growing on coastal sandy dunes. Intraspecific variability in the responses to constant temperatures (5–25°C) and an alternating temperature regime (25/10°C), salt stress (0–600 mM NaCl) and recovery of seed germination was evaluated among six populations from Sardinia and Corsica. Seeds were non-dormant and germination percentages ranged from 10 to 83%, depending on temperature and population. Differences in germination percentages were mainly due to different seed mortality among seed lots. R. polygama seeds germinated in salt concentrations up to 200 mM NaCl, whereas higher salt concentrations totally inhibited germination. Salt affected seed viability, and the recovery response decreased with increasing salinity and temperature. Inter-population variability and different sensitivity to NaCl in seed germination were detected. Our results are consistent with field germination in a period from autumn to spring, when water is available in the soil and temperatures are not prohibitive for seedling establishment, representing an advantageous ecological adaptation for seedling establishment to the unpredictable Mediterranean rainfall pattern. Further studies on R. polygama are needed to investigate germination requirements at temperatures higher than 25°C and its germination in the field, and to clarify genetic inter-population variability, considering a higher number of populations and possibly extending to North African populations.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atia, A., Smaoui, A., Barhoumi, Z., Abdelly, C. and Debez, A. (2011) Differential response to salinity and water deficit stress in Polypogon monspliensis (L.) Desf. provenances during germination. Plant Biology 13, 541545.CrossRefGoogle ScholarPubMed
Baskin, C.C. and Baskin, J.M. (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Bischoff, A. and Müller-Schärer, H. (2010) Testing population differentiation in plant species: how important are environmental maternal effects? Oikos 119, 445454.CrossRefGoogle Scholar
Blasi, C., Boitani, L., La Posta, S., Manes, F. and Marchetti, M. (2007) Stato della biodiversità in Italia: contributo alla strategia nazionale per la biodiversità. Roma, Palombi editori.Google Scholar
Cruz, A., Perez, B., Velasco, A. and Moreno, J.M. (2003) Variability in seed germination at the interpopulation, intrapopulation and intraindividual levels of the shrub Erica australis in response to fire-related cues. Plant Ecology 169, 93103.CrossRefGoogle Scholar
Cursach, J. and Rita, J. (2012) Reproductive biology and reproductive output assessment in natural and introduced subpopulations of Apium bermejoi, a ‘Critically Endangered’ endemic plant from Menorca (western Mediterranean). Nordic Journal of Botany 30, 754768.CrossRefGoogle Scholar
El-Keblawy, A., Al-Ansari, F. and Al-Shamsi, N. (2010) Effects of temperature and light on salinity tolerance during germination in two desert glycophytic grasses, Lasirius scindicus and Panicum turgidum . Grass and Forage Science 66, 173182.CrossRefGoogle Scholar
Guma, I.R., Padròn-Mederos, M.A., Santos-Guerra, A. and Reyes-Betancort, J.A. (2010) Effect of temperature and salinity on germination of Salsola vermiculata L. (Chenopodiaceae) from Canary Islands. Journal of Arid Environments 74, 708711.CrossRefGoogle Scholar
Hendrix, S.D. (1984) Variation in seed weight and its effect on germination in Pastinaca sativa L. (Umbelliferae). American Journal of Botany 71, 795802.CrossRefGoogle Scholar
Hong, T.D., Linington, S.H. and Ellis, R.H. (1998) Compendium of information on seed storage behaviour, Vol.2. Kew, UK, Royal Botanic Gardens.Google Scholar
Khan, M.A. and Gul, B. (2006) Halophyte seed germination. pp. 1130 in Khan, M.A.; Weber, D.J. (Eds) Eco-physiology of high salinity tolerant plants. Dordrecht, Netherlands, Springer.CrossRefGoogle Scholar
Khan, M.A. and Ungar, I.A. (1984) The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. American Journal of Botany 71, 481489.CrossRefGoogle Scholar
Marchioni-Ortu, A. and Bocchieri, E. (1984) A study of the germination responses of a Sardinian population of sea fennel (Crithmum maritimum). Canadian Journal of Botany 62, 18321835.CrossRefGoogle Scholar
Martin, A.C. (1946) The comparative internal morphology of seeds. American Midland Naturalist 36, 513660.CrossRefGoogle Scholar
Maun, M.A. (2009) The biology of coastal sand dunes. Oxford, UK, Oxford University Press.CrossRefGoogle Scholar
Medail, F. and Quézel, P. (1999) Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conservation Biology 13, 15101513.CrossRefGoogle Scholar
Meot-Duros, L. and Magnè, C. (2008) Effect of salinity and chemical factors on seed germination in the halophyte Crithmum maritimum L. Plant Soil 313, 8387.CrossRefGoogle Scholar
Moravcová, L., Perglová, I., Pyšek, P., Jarošík, V. and Pergl, J. (2005) Effects of fruit position on fruit mass and seed germination in the alien species Heracleum mantegazzianum (Apiaceae) and the implications for its invasion. Acta Oecologica 28, 110.CrossRefGoogle Scholar
Paradis, G. and Géhu, J.M. (1992) Observations synécologiques sur l'espéce protégée Rouya polygama (Desf.) Coincy, dans ses stations corses. Documents Phytosociologiques 14, 351366.Google Scholar
Pujol, J.A., Calvo, J.F. and Ramírez-Diaz, L. (2000) Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain. Annals of Botany 85, 279286.CrossRefGoogle Scholar
Sanna, M., Mattana, E., Ventimilla, P. and Bacchetta, G. (2009) Germination ecology of Ferula arrigonii and F. communis (Apiaceae): a comparative approach. p. 250 in Bacchetta, G. (Ed.) Biodiversity hotspots in the Mediterranean area: species, communities and landscape level. Book of abstracts, 45th International Congress of SISV & FIP, Cagliari, 22–29 June.Google Scholar
Santo, A., Fenu, G. and Bacchetta, G. (2013) Schede per una Lista Rossa della Flora vascolare e crittogamica Italiana: Rouya polygama (Desf.) Coincy. Informatore Botanico Italiano 45, 175177.Google Scholar
Santo, A., Mattana, E., Frigau, L. and Bacchetta, G. (2014) Light, temperature, dry after-ripening and salt stress effects on seed germination of Phleum sardoum (Hackel) Hackel. Plant Species Biology 29, 300305.CrossRefGoogle Scholar
Stokes, P. (1952) A physiological study of embryo development in Heracleum sphondylium L.: the effect of temperature in embryo development. Annals of Botany 16, 441447.CrossRefGoogle Scholar
Thanos, C.A., Georghiou, K., Douma, D.J. and Marangaki, C.J. (1991) Photoinhibition of seed germination in Mediterranean maritime plants. Annals of Botany 68, 469475.CrossRefGoogle Scholar
Thanos, C.A., Kadis, C.C. and Skarou, F. (1995) Ecophysiology of germination in the aromatic plants thyme, savory and oregano (Labiatae). Seed Science Research 5, 161170.CrossRefGoogle Scholar
Thomas, T.H., Biddington, N.L. and O'Toole, D.F. (1979) Relationship between position on the parent plant and dormancy characteristics of seeds of three cultivars of celery (Apium graveolens). Physiologia Plantarum 45, 492496.CrossRefGoogle Scholar
Ungar, I.A. (1995) Seed germination and seed-bank ecology in halophytes. pp. 599627 in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
Vandelook, F., Bolle, N. and Van Assche, J.A. (2007) Seed dormancy and germination of the European Chaerophyllum temulum (Apiaceae), a member of a trans-Atlantic genus. Annals of Botany 100, 233239.CrossRefGoogle ScholarPubMed
Vandelook, F., Janssens, S.B. and Probert, R.J. (2012) Relative embryo length as an adaptation to habitat and life cycle in Apiaceae. New Phytologist 195, 479487.CrossRefGoogle ScholarPubMed
Vallejo, A.J., Yanovsky, M.J. and Botto, J.F. (2010) Germination variation in Arabidopsis thaliana accessions under moderate osmotic and salt stress. Annals of Botany 106, 833842.CrossRefGoogle Scholar