Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T22:38:34.011Z Has data issue: false hasContentIssue false

The Other Einstein: Einstein Contra Field Theory

Published online by Cambridge University Press:  26 September 2008

John Stachel
Affiliation:
Center for Einstein Studies, Department of Physics, Boston University

Abstract

Besides the well-known advocate of unified field theories, there was “another Einstein,” who was skeptical of the continuum as a foundational element in physics. This paper presents evidence for the existence of this “other Einstein,” and of the debate between the two Einsteins that lasted most of Einstein's life.

Type
The Philosophical Context
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashtekar, Abhay and John, Stachel, eds. 1991. Conceptual Problems of Quantum Gravity, Einstein Studies, vol. 2. Boston: Birkäuser.Google Scholar
Dedekind, Richard. [1901]1893. Was sind und was sollen die Zahlen? 2nd ed. Braunschweig:Vieweg und Sohn.Google Scholar
Dedekind, Richard. [1901]1963 “The Nature and Meaning of Numbers.” In Essays on the Theory of Numbers, translated by Wooster Woodruff Beman, 29115. Chicago:Open Court. Reprinted by Dover, New York.Google Scholar
Einstein, Albert. 1921. “Geometrie und Erfahrung.” Preussische Akademie der Wissenschaften, physikalisch-mathemaiische Klasse. Sitzungsberichte,“n.vrdquo;123–30.Google Scholar
Einstein, Albert 1923. “Bietet die Feldtheorie Möglichkeiten für die Lösung des Quanten problems.” Preussische Akademie der Wissenschaften, physikalisch-mazhe matische Kiasse. Sitzungsberichte,[n.v], 359–64.Google Scholar
Einstein, Albert. 1949. “Autobiographical Notes.” In Albert Einstein: Philosopher-Scientist, edited by Paul Arthur, Schilpp. LaSalle, 111.: Open Court.Google Scholar
Einstein, Albert 1954. Ideas and Opinions. New York: Crown.Google Scholar
Einstein, Albert. 1955. “Appendix II: Relativistic Theory of the Non-Symmetric Field.” In The Meaning of Relativity, 133–66, 5th ed. Princeton, N.J.: Princeton University Press.Google Scholar
Einstein, Albert. 1987. The Collected Papers of Albert Einstein. Vol. 1: The Early Years, 18791902. edited by Stachel, John et al. . Princeton, N.J.: Princeton University Press.Google Scholar
Einstein, Albert. 1989. The Collected Papers of Albert Einstein. Vol. 2: Writings, 19001909. edited by Stachel, John et al. . Princeton, N.J.:Princeton University Press.Google Scholar
Einstein, Albert, 1993. The Collected Papers of Albert Einstein. Vol. 3: Writings, 19091911. edited by Martin, Klein et al. . Princeton, N.J.: Princeton University Press.Google Scholar
Fraenkel, Abraham, H., 1954. “The Intuitionistic Revolution in Mathematics and Logic.” Bulletin of the Research Council of Israel 3:283–89.Google Scholar
Holton, Gerald. [1972] 1988. “On Trying to Understand Scientific Genius.” In Holton, Thematic Origins of Scientific Thought. 2nd ed., 371–8. Cambridge, Mass.: Harvard University Press. (Originally published in The American Scholar 41:95110).Google Scholar
Hume, David. 1969. A Treatise of Human Nature. Edited by Mosser, Ernest C.. Harmondsworth:Penguin Books.Google Scholar
Lorentz, Hendrik, Antoon. 1903. “Maxwells elektromagnetische Theorie.” In Encyklopädie der Mathematischen Wissenschaften. Vol. 5, Physik: Zweiter Teil, edited by Arnold, Sommerfeld 67144. Leipzig:B.G.Teubner..Google Scholar
Pais, Abraham. 1982. “Subtle Is the Lord.” The Science and the Life of Albert Einstein. Oxford:Oxford University Press.Google Scholar
Riemann, Bernhard. [1854]1953. “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen.” Kónigliche Gesellschaft der Wissenschaften undder Georg Augusts- Universitát (Gottingen). Mathematische Klasse, Abhandlungen 13:133–52. Cited from B. Riemann, Gesammelte mathematische Werke, 2nd ed. edited by Heinrich, Weber. Leipzig: Teubner B.O.. 1902. Reprinted edition, 272–87. New York:Dover.Google Scholar
Smith, David Eugene. [1929]1959. A Source Book in Mathematics. New York:Dover.Google Scholar
Stachel, John. 1986. “Einstein and the Quantum: Fifty Years of Struggle.” In From Quarks to Quasars: Philosophical Problems of Modern Physics, edited by Colodny, Robert G.., 349–85. Pittsburgh: University of Pittsburgh Press.CrossRefGoogle Scholar
Stachel, John. 1987a. “Einstein and Ether Drift Experiments.” Physics Today 40:4547.CrossRefGoogle Scholar
Stachel, John. 1987b. “How Einstein Discovered General Relativity: A Historical Tale with Some Contemporary Morals.” In General Relativity and Gravitation: Proceedings of the Eleventh International Conference on General Relativity and Gravitation, Stockholm, 6–12 July 1986, edited by MacCallum, Malcolm A. H.., 200208. Cambridge: Cambridge University Press.Google Scholar
Stachel, John. 1989. “Einstein's Search for General Covariance, 1912–1915.” In Einstein and the History of General Relativity, Einstein Studies, Vol. 1, edited by Don, Howard and Stachel, John 63100. Boston:Birkhäuser.Google Scholar
Stachel, John. 1991a. “Einstein and Quantum Theory.” In Ashtekar and Stachel 1991. xx–xx. Boston:Birkhäuser.Google Scholar
Stachel, John. 1991b. “The Meaning of General Covariance: The Hole Story.” To appear in Festschrift for Adolf Griinbaum, edited by Janis, Allen I. Nicholas, Rescher and Massey, Gerald J..Google Scholar