Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T22:26:57.577Z Has data issue: false hasContentIssue false

The ingénieur savant, 1800–1830 A Neglected Figure in the History of French Mathematics and Science

Published online by Cambridge University Press:  26 September 2008

I. Grattan-Guinness
Affiliation:
Middlesex University

Abstract

This paper deals with the achievements of those French mathematicians active in the period 1800–1830 who oriented their work specifically around the needs of engineering and technology. In addition to a review of their achievements, the principal organizations and institutions are noted, as is their importance as sources of employment and influence.

The argument is centered on the word ‘neglected“ in the title. A case is made that a mass of work was produced which made considerable impact at the time but has been overlooked or even completely ignored by historians since. The paper begins with a general discussion of the notion of context, both for the historical figures and for their supposed historians, and several examples of historical distortion are given.

Regarding France itself, we see a professional and research profile rather different from that in other countries. The question of national differences in the organization and prosecution of science is thereby sharply exposed.

Type
Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acloque, P. 1981. Oscillations et stabilité selon Foucault.…Paris: CNRSGoogle Scholar
Airy, G. B. 1826. Mathematical Tracts.…1st ed. Cambridge: DeightonGoogle Scholar
Airy, O. 1845. “Tides and Waves.” In Encyclopaedia metropolitana 5:241*396*.Google Scholar
Artz, F. B. 1966. The Development of Technical Education in France, 1500–1850. Cambridge, Mass.: MIT Press.Google Scholar
Barnard, H. 1862. Military Schools and Courses of Instruction in the Science and Art of War.…2 pts. Philadelphia: LippincottGoogle Scholar
Barnard, H. 1872. Systems, Institutions and Statistics of Public Instruction in Different Countries. 2 pts. New York: SteigerGoogle Scholar
Ben-David, J. 1970. “The Rise and Decline of France as a Scientific Centre.” Minerva 8: 160–79.CrossRefGoogle Scholar
Berthaut, H. M. A. 1898–99. La carte de France, 1750–1898: Etude historique. 2 vols. Paris: Service Géographique.Google Scholar
Berthaut, H. M. A. 1902. Les ingénieurs geographes militaires 1624–1831: Etude historique. Paris: Service Géographique.Google Scholar
Bigourdan, G. 1828–31. “Le Bureau des Longitudes….” Annuaire du Bureau des Longitudes. 1928: A1–72; 1929: C1–92; 1930: Al–hO; 1931: Ai–145; 1932: Al–117; 1933: A1–91.Google Scholar
Booker, P. J. [1963] 1978. A History of Engineering Drawing. London: Chatto and Windus. Reprint, Bury St. Edinunds: NorthgateGoogle Scholar
Boyer, C. B. 1956. History of Analytic Geometry. New York: Scripta Mathematica.Google Scholar
Bradley, M. 1981. “Franco-Russian Engineering Links: The Careers of Lamé and Clapeyron, 1820–1830.Annals of Science 38 291–312.CrossRefGoogle Scholar
Bradley, M. 1984. “Gaspard-Clair-François-Marie Riche de Prony.” Ph.D. diss., Council for National Academic Awards, London.Google Scholar
Bradley, M. 1985. “Civil Engineering and Social Change: The Early History of the Paris Ecole des Ponts et Chaussées.History of Education 14 171–83.CrossRefGoogle Scholar
Bret, P. 1991. “Le Dépôt Général de la Guerre et La formation scientifique des ingénieurs-géographiques militaires en France (1789–1820).” Annals of Science 48 113–57.CrossRefGoogle Scholar
Crosland, M. P. 1961. The Society of Arcueil.… London: HeinemannGoogle Scholar
Daston, L. 1986. “The Physicalist Tradition in Early Nineteenth-Century French Geometry.” Studies in the History and Philosophy of Science 17 269–95.CrossRefGoogle Scholar
de Prony, G.-C.-F.-M. Riche. 1835. “Brunacci.” Biographie universelle ancienne et moderne 59 363–67.Google Scholar
Dhombres, J. G. 1985. “French Mathematical Textbooks from Euler to Cauchy.” Historia scientorum 28 91–137.Google Scholar
Fourcy(-Gaudain), A. L. [1828] 1987. Histoire de l'Ecole Polytechnique. Paris: Ecole Polytechnique. Reprint, Paris: Belin, with notes by J. G. Dhombres.Google Scholar
Franksen, O. I., and Grattan-Guinness, I. 1989. “The Earliest Contribution to Location Theory: A Memoir by Lamé and Clapeyron, 1829.” Mathematics and Computers in Simulation 31 195220.CrossRefGoogle Scholar
Fuller, A. T., ed. 1975. Stability of Motion. London: Taylor and Francis.Google Scholar
Gauss, C. F. [1809] 1933. Theoriamotuscorporum coelestium. Hamburg: Perthus and Besser. Reprinted in Gauss, Werke, Leipzig: Teubner, 7:1–282.Google Scholar
Geppert, H. 1933. “Über Gauss's Arbeiten zur Mechanik und Potentialtheorie.” In C. F. Gauss, Werke, vol. 10, part 2. Leipzig: Teubner 61 pp.Google Scholar
Gillmor, C. S. 1971. Charles Augustin Coulomb.… Princeton, N.J.: Princeton University Press.Google Scholar
Girard, P. S. 1831–43. Mémoires sur le canal de l'Ourcq.… 2 vols. and 2-vol. atlas. Paris: Carilain–Goeury. (Vol. 2 appeared posthumously, edited by L.-J., Favier.)Google Scholar
Glas, E. 1986. “On the Dynamics of Mathematical Change in the Case of Monge and the French Revolution.” Studies in the History and Philosophy of Science 17 249–68.CrossRefGoogle Scholar
Grattan-Guinness, I. 1984. “Work for the Workers: Advances in Engineering Mechanics and Instruction in France, 1800–1830.” Annals of Science 41 1–33.CrossRefGoogle Scholar
Grattan-Guinness, I. 1985. “Mathematics and Mathematical Physics at Cambridge, 1815–40.…” In Wranglers and Physicists…, edited by Harman, P, 84–111. Manchester: Manchester University Press.Google Scholar
Grattan-Guinness, I. 1988. “Grandes écoles, petite Université: Some Puzzled Remarks on Higher Education in Mathematics in France, 1795–1840.” History of Universities 7 197–225.Google Scholar
Grattan-Guinness, I. 1989. “Modes and Manners of Applied Mathematics: The Case of Mechanics.” In History of Modern Mathematics, edited by Rowe, D. and McCleary, J., vol. 2, 109–26. New York: Academic Press.Google Scholar
Grattan-Guinness, I. 1990a. Convolutions in French Mathematics, 1800–1840: From the Calculus and Mechanics to Mathematical Analysis and Mathematical Physics. 3 vols. Basel: Birkhauser; Berlin, DDR: Deutscher Verlag der Wissenschaften.Google Scholar
Grattan-Guinness, I. 1990b. “Does History of Science Treat of the history of science? The Case of Mathematics.” History of Science 28 149–73.CrossRefGoogle Scholar
Grattan-Guinness, I. 1990c. “The Varieties of Mechanics by 1800.” Historia mathematical 17 313–38.CrossRefGoogle Scholar
Grattan-Guinness, I. 1990d. “Work for the Hairdressers: The Production of de Prony's Logarithmic and Trigonometric Tables.” Annals of the History of Computing 12 177–85.CrossRefGoogle Scholar
Heyman, J. 1972. Coulomb's Memoir on Statics. An Essay on the History of Civil Engineering. Cambridge: Cambridge University Press.Google Scholar
Hulin-Jung, N. 1989. L 'organisation de l'enseignement des sciences: la voie ouverte par le second Empire. Paris: Comité des Travaux Historiques et Scientifiques. Journal general de l'imprimerie et de la librairie, volume for 1811–12, Paris.Google Scholar
Konvitz, J. 1987. Cartography in France 1660–1848.…. Chicago: University of Chicago Press.Google Scholar
Kötter, E. 1901. “Die Entwickelung der synthetischen Geometrie von Monge bis auf Staudt (1847).” Jahresbericht der Deutschen Mathematiker- Vereinigung part 2.Google Scholar
Kötter, F. W. F. 1892. “Die Entwicklung der Lehre vom Erddruck.” Jahresbericht der Deutschen Mathematiker-Vereinigung 2:77154.Google Scholar
Kuhn, T. S. 1976–77. “Mathematical vs. Experimental Traditions in the Development of Physical Science.” Journal of Interdisciplinary Sciences 7: 1 –31. Also printed in Kuhn, The Essential Tension. Chicago and London: University of Chicago Press, pp. 31–65.Google Scholar
“Letter to the Editor“ and ‘Editor's Reply.” 1829. Journal du genie civil, des sciences et des arts 4:143–57.Google Scholar
Locqueneux, R. 1990. “Charles Combes (1801–1872).…” Archives internationales d'histoire des sciences 40 1129.Google Scholar
Loria, G. 1921. Storia della geometria descrittiva…. Milan: HoepliGoogle Scholar
Mascart, J. M. 1919. La vie et les travaux du Chevalier Jean-Charles Borda (1733–1799)… Lyon (as Annales de l'Université de Lyon, n.s., sec. 2 [lettres], fascicule 33).Google Scholar
Mouret, E. J. G. 1921. “Antoine de Chézy: Histoire d'une formule d'hydraulique.” Annales des ponts et chaussées, vol. 1, 165269.Google Scholar
Outram, D. 1980. “Politics and Vocation: French Science 1793–1830.” British Journalfor the History of Science 13 2743.CrossRefGoogle ScholarPubMed
Paul, H. 1972. “The Issue of Decline in Nineteenth-Century French Science.” French Historical Studies 7 416–51.CrossRefGoogle Scholar
Paul, M. 1980. Gaspard Monges ‘Géométrie descriptive“ und die Ecole Polytechnique.… Bielefeld: Institut für Didaktik der Mathematik.Google Scholar
Petot, J. 1958. Histoire de l'administration des Fonts et Chaussées, 1599–1815. Paris: Riviêre.Google Scholar
Picon, A. 1988. “Les ingénieurs et la mathématisation. L'exemple du genie civil et de la construction.” Revue d'histoire des sciences 42 155–72.CrossRefGoogle Scholar
Poncelet, J. V. 1848 \1936] Letter of Resignation from His Chair at the Paris Faculté des Sciences of the Université. In H. Tribout, Un grand savant: I.e général Jean- Victor Poncelet, 1788–1867. Paris: Suffroy, pp. 122–25. Originally published in Moniteur universel, p. 868. (Manuscript in Archives Nationales, F17 21524.)Google Scholar
Poncelet, J. V. 1852. “Examen critique et historique des principales theories ou solutions concernant l'équilibre des votes.” Comptes rendus de l'Académie des Sciences 35 495502, 531–40, 577–87.Google Scholar
Pothier, F. 1887. Histoire de l'Ecole Cent rale des Arts et Manufactures. … Paris: Delamotte.Google Scholar
“Quelques réflexons“ and ‘Nouvelles réflexions“ [the administration of Corps des Ponts et Chaussées]. 1829. Journal du genie civil, des sciences et des arts 2:119–28, 350–59.Google Scholar
Rühlmann, M. 18811885. Vorträge zur Geschichte der theoretischen Maschinen lehre.… 2 parts. Braunschweig: SchwetschkeGoogle Scholar
Smith, C., and Wise, N. 1989. Energy and Empire: A Biographical Study of Lord Kelvin. Cambridge: Cambridge University Press.Google Scholar
Smith, C. O. 1990. “The Longest Run: Public Engineers and Planning in France.” American Historical Review 95 657–92.CrossRefGoogle Scholar
Smith, J. G. 1979. The Origins and Early Development of the Heavy Chemical Industry in France. Oxford: Clarendon Press.Google Scholar
“Survey of the French Educational System.” [1830] 1831. Quarterly Journal of Education 2:83–113. Originally published in Bulletin universel des sciences et de l'industrie, sciences géographiques, canaux, voyages 24 267310.Google Scholar
Taton, R. 1951. L'Oeuvre scient de Monge. Paris: Presses Universitaires de France.Google Scholar
Thomson, W. [1851–53] 1882. “On the Dynamical Theory of Heat. …Transactions of the Royal Society of Edinburgh 20 261–98, 475–82. Reprinted in Mathematical and Physical Papers 1:174–232.CrossRefGoogle Scholar
Thomson, W. [1882] 1911. “The Tide Gauge, Tidal Harmonic Analyser, and Tide Predictor.' Minutes of the Proceedings of the Institute of Civil Engineers, 2–25. Reprinted in Mathematical and Physical Papers 6:272–305, edited by Larmor, J..CrossRefGoogle Scholar
Todhunter, I. [1886] 1960. A History of the Theory of Elasticity and the Strength of Materials, vol. 1. Edited by Pearson, K. Cambridge: Cambridge University Press. Reprint, New York: DoverGoogle Scholar
Weiss, J. H. 1982. The Making of Technological Man: The Social Origins of French Engineering Education. Cambridge, Mass.: MIT Press.Google Scholar
Whewell, W., 1830. “Theory of Electricity.” In Encyclopaedia Metropolitana,4 140–70. (Unsigned)Google Scholar
Whewell, W. 1841. Mechanics of Engineering, Intended for Use in Universities and in Colleges of Engineers. Cambridge: DeightonGoogle Scholar
Wolf, C. J. E., ed. 1889–91. Mémoires sur le pendule.…. 2 parts. Paris: Gauthier-Villars.Google Scholar