Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T05:15:58.305Z Has data issue: false hasContentIssue false

Homeomeric Lines in Greek Mathematics

Published online by Cambridge University Press:  26 January 2010

Fabio Acerbi*
Affiliation:
Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8163, “Savoirs, textes, langage”F-59653 – Villeneuve d'Ascq, France

Argument

This article presents ancient documents on the subject of homeomeric lines. On the basis of such documents, the article reconstructs a definition of the notion as well as a proof of the result, which is left unproved in extant sources, that there are only three homeomeric lines: the straight line, the circumference, and the cylindrical helix. A point of particular historiographic interest is that homeomeric lines were the only class of lines defined directly as the extension of a mathematical property, a move that is unparalleled in Greek mathematics. The far-reaching connections between mathematical homeomery and key issues in the ancient cosmological debate are extensively discussed here. An analysis of its relevance as a foundational theme will be presented in a companion paper in a future issue of Science in Context.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Other References

Acerbi, Fabio. 2008. “Euclid's Pseudaria.” Archive for History of Exact Sciences 62:511551.CrossRefGoogle Scholar
Apollonius. 1990. Conics, Books V to VII. The Arabic Translation of the Lost Greek Original in the Version of the Banû Mûsâ. Edited, with English translation and commentary by Toomer, Gerald J.. 2 vols. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Crönert, Wilhelm. 1900. “Der Epikureer Philonides.” Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin 41 (2):942959.Google Scholar
Diocles. 1976. On Burning Mirrors. The Arabic Translation of the Lost Greek Original. Edited, with English translation and commentary by Toomer, Gerald J.. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Drachmann, Aage Gerhardt. 1963. The Mechanical Technology of Greek and Roman Antiquity. Copenhagen: Munksgaard.Google Scholar
Dye, Guillaume and Vitrac, Bernard. 2009. “Le Contre les géomètres de Sextus Empiricus: sources, cible, structure.” Phronesis 54:155203.Google Scholar
Falcon, Andrea. 2005. Aristotle and the Science of Nature. Unity without Uniformity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Guthrie, William Keith Chambers. 1962–69. A History of Greek Philosophy. 6 vols. Cambridge: Cambridge University Press.Google Scholar
Hankinson, Robert James. 2002–03. “Xenarchus, Alexander, and Simplicius on Simple Motions, Bodies and Magnitudes.” Bulletin of the Institute for Classical Studies 46:1943.CrossRefGoogle Scholar
Heath, Thomas Little. 1921. A History of Greek Mathematics. 2 vols. Oxford: Oxford University Press.Google Scholar
Jones, Alexander. 1999. “Geminus and the Isia.” Harvard Studies in Classical Philology 99:255267.CrossRefGoogle Scholar
Knorr, Wilbur Richard. 1986. The Ancient Tradition of Geometric Problems. Boston, Basel, Berlin: Birkhäuser.Google Scholar
Molland, A. George. 1976. “Shifting the Foundations. Descartes's Transformation of Ancient Geometry.” Historia Mathematica 3:2149.CrossRefGoogle Scholar
Moraux, Paul. 1973. Der Aristotelismus bei den Griechen. Vol. I: Die Renaissance des Aristotelismus im I. Jh. v. Chr. Berlin, New York: de Gruyter.CrossRefGoogle Scholar
Rashed, Roshdi. 2005. “Les premières classifications des courbes.” Physis 42:164.Google Scholar
Tannery, Paul. 1881. “Quelques fragments d'Apollonius de Perge.” Bulletin des Sciences mathématiques 2e série, V:124–136, reprinted in Idem, Mémoires scientifiques, edited by Heiberg, Johan Ludwig and Zeuthen, Hieronymus Georg. 17 vols. I:124138. Toulouse: Privat; Paris: Gauthier-Villars 1912–1950.Google Scholar
Tannery, Paul. 1883–4. “Pour l'histoire des lignes et surfaces courbes dans l'antiquité.” Bulletin des Sciences mathématiques 2e série, VII:278–291 and VIII:19–30, 101–112, reprinted in Idem, Mémoires scientifiques II:1–47.Google Scholar
Todd, Robert B. 1994. “Damianus.” In Dictionnaire des Philosophes Antiques, edited by Goulet, II, Richard:594597. Paris: CNRS Editions.Google Scholar