Published online by Cambridge University Press: 21 March 2014
Optimal path planning of a closed loop cable robot, between two predefined points in presence of obstacles is the goal of this paper. This target is met by proposing a new method of optimal regulation for non linear systems while Dynamic Load Carrying Capacity (DLCC) of the robot is supposed as the related cost function. Feedback linearization is used to linearize the system while Linear Quadratic Regulator (LQR) is employed to optimize the DLCC of the system based on torque and error constraints. Obstacle avoidance for both the end-effector and cables is also considered by the aid of designing an adaptive local obstacle avoidance controller. As a result of linearized nature of the proposed optimal regulation and obstacle avoidance, fast calculation for real time applications is possible. Therefore, formulation of the optimal feedback linearization, together with calculating the DLCC of the robot based on the presented constraints is derived. Finally, a simulation study is performed to study the optimal dynamics and also the maximum DLCC of the cable robot in presence of obstacles. Simulation results are eventually compared with experimental tests conducted on IUST Cable Suspended Robot (ICaSbot) to verify the validity and efficiency of the proposed optimal controllers.