Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T19:31:22.758Z Has data issue: false hasContentIssue false

Numerical methods based controller design for mobile robots

Published online by Cambridge University Press:  01 March 2009

Gustavo Scaglia*
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (oeste), J5400ARL San Juan, Argentina.
Lucía Quintero Montoya
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (oeste), J5400ARL San Juan, Argentina.
Vicente Mut
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (oeste), J5400ARL San Juan, Argentina.
Fernando di Sciascio
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (oeste), J5400ARL San Juan, Argentina.
*
*Corresponding author. E-mail: [email protected]

Summary

This paper presents the design of four controllers for a mobile robot such that the system may follow a preestablished trajectory. To reach this aim, the kinematic model of a mobile robot is approximated using numerical methods. Then, from such approximation, the control actions to get a minimal tracking error are calculated. Both simulation and experimental results on a PIONEER 2DX mobile robot are presented, showing a good performance of the four proposed mobile robot controllers. Also, an application of the proposed controllers to a leader robot following problem is shown; in it, the relative position between robots is obtained through a laser.

Type
Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Del Rio, F., Jiménez, G., Sevillano, J., Amaya, C. and Balcells, A., “Error Adaptive Tracking for Mobile Robots,” Proceedings of the 2002 28th Annual Conference of the IEEE Industrial Electronics Society, Saville, Spain (2002) pp. 2415–2420.Google Scholar
2.Lee, S. and Park, J. H., “Virtual Trajectory in Tracking Control of Mobile Robots,” Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronic (AIM 2003), Port Island, Kobe, Japan (2003) pp. 35–39.Google Scholar
3.Normey-Rico, J., Gomez-Ortega, J. and Camacho, E., “A Smith-predictor-based generalized predictive controller for mobile robot path-tracking,” Control Eng. Pract. 7, 729740 (1999).CrossRefGoogle Scholar
4.Lee, T., Song, K., Lee, C. and Teng, C., “Tracking control of unicicle-modeled mobile robots using a saturation feedback controller,” IEEE Trans. Control Syst. Technol. 9 (2) (Mar. 2001), pp. 305318.Google Scholar
5.Do, K. D. and Pan, J., “Global output-feedback path tracking of unicycle-type mobile robots,” Rob. Comput.-Integr. Manufact., 22, 166179 (2006).CrossRefGoogle Scholar
6.Tsuji, T., Morasso, P. and Kaneko, M., “Feedback Control of Nonholonomic Mobile Robots Using Time Base Generator,” Proceedings of IEEE International Conference on Robotics and Automation, Nagoya Japan (1995), Vol. 2, pp. 1385–1390.Google Scholar
7.Fierro, R. and Lewis, F., “Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics,” Proceedings of the 34th Conference on Decision & Control, New Orleans, LA (Dec. 1995), Vol. 4, pp. 3805–3810.Google Scholar
8.Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, T., “A Stable Tracking Control Method for an Autonomous Mobile Robot,” Proceedings of IEEE International Conference on Robotics and Automation, Cincinnati, Ohio (1990) pp. 384–389.Google Scholar
9.Fukao, T., Nakagawa, H. and Adachi, N., “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Trans. Rob. Automat. 16 (5)609615 (Oct. 2000).CrossRefGoogle Scholar
10.Kim, S., Shin, J. and Lee, J., “Design of a Robust Adaptive Controller for a Mobile Robot,” Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3, pp. 1816–1821.Google Scholar
11.Chwa, D., “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Trans. Control Syst. Technol. 12 (4) (July 2004).CrossRefGoogle Scholar
12.Shim, H. and Sung, Y., “Stability and four-posture control for nonholonomic mobile robots,” IEEE Trans. Rob. Automat. 20 (1) (Feb. 2004).CrossRefGoogle Scholar
13.Sun, S. and Cui, P., “Path tracking and a practical point stabilization of mobile robot,” Rob. Comput.-Integr. Manufact. 20, 2934 (2004).CrossRefGoogle Scholar
14.Sun, S., “Designing approach on trajectory-tracking control of mobile robot,” Rob. Comput.-Integr. Manufact. 21 (1), 8185 (Feb. 2005).CrossRefGoogle Scholar
15.Cruz, D., Mcclintock, J., Perteet, B., Orqueda, O. A. A., Cao, Y. and Fierro, R., “Decentralized cooperative control–-A multivehicle platform for research in networked embedded systems,” Control Syst. Mag. IEEE 27 (3), 5878 (June 2007).Google Scholar
16.Normey-Rico, J., Alcalá, I., Gomez-Ortega, J. and Camacho, E., “Mobile robot path tracking using PID controller,” Control Eng. Pract. 9, 12091214 (2001).CrossRefGoogle Scholar
17.Dixon, W., de Queiroz, M., Dawson, D. and Flynn, T., “Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity,” IEEE Trans. Control Syst. Technol. 12 (1), 138147 (Jan. 2004).CrossRefGoogle Scholar
18.Campion, G., Bastin, G. and d'Andrea-Novel, B., “Structural properties and clasification of kinematic and dynamic models of wheeled mobile robots,” IEEE Trans. Rob. Automat. 12 (1), 4762 (Feb. 1996).CrossRefGoogle Scholar
19.Strang, G., Linear Algebra and Its Applications (Academic Press, New York, 1980).Google Scholar
20.Konolige, K., “Saphira software manual version 6.1,” Peterborough, NH-USA, ActivMedia Inc., October 1997.Google Scholar