Hostname: page-component-599cfd5f84-ncv4z Total loading time: 0 Render date: 2025-01-07T08:04:32.487Z Has data issue: false hasContentIssue false

A new method to solve robot inverse kinematics using Assur virtual chains

Published online by Cambridge University Press:  06 March 2009

H. Simas*
Affiliation:
Departamento de Engenharia Mecânica, Laboratório de Robótica, UFSC Florianópolis, SC, Brazil CTTMAR – Centro de Ciências Tecnológicas da Terra e do Mar, UNIVALI - São José, SC, Brazil
R. Guenther
Affiliation:
Departamento de Engenharia Mecânica, Laboratório de Robótica, UFSC Florianópolis, SC, Brazil in memoriam
D. F. M. da Cruz
Affiliation:
Departamento de Engenharia Mecânica, Laboratório de Robótica, UFSC Florianópolis, SC, Brazil
D. Martins
Affiliation:
Departamento de Engenharia Mecânica, Laboratório de Robótica, UFSC Florianópolis, SC, Brazil
*
*Corresponding author. E-mail: [email protected]

Summary

This paper describes a numerical algorithm to solve the inverse kinematics of parallel robots based on numerical integration. Inverse kinematics algorithms based on numerical integration involve the drift phenomena of the solution; as a consequence, errors are generated when the end-effector location differs from that desired. The proposed algorithm associates a novel method to describe the differential kinematics with a simple numerical integration method. The methodology is presented in this paper and its exponential stability is proved. A numerical example and a real application are presented to outline its advantages.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Campos, A., Guenther, R. and Martins, D., “Differential kinematics of serial manipulators using virtual chains,” J. Braz. Soc. Mech. Sci. Eng. 27 (4), 345356 (2005).CrossRefGoogle Scholar
2.Artobolevski, I. I., Théorie des Mécanismes et des Machines (Mir Publishers, Moscow, Russia, 1977).Google Scholar
3.Campos, A., Cinemática diferencial de manipuladores empregando cadeias virtuais Ph.D. Thesis (Florianópolis, Brazil: Universidade Federal de Santa Catarina, 2005).Google Scholar
4.Davidson, J. K. and Hunt, K. H., Robots and Screw Theory: Applications of Kinematics and Statics to Robotic (Oxford University Press, New York, USA, 2004).CrossRefGoogle Scholar
5.Davies, T. H., “Kirchhoff's circulation law applied to multi-loop kinematic chain,” Mech. Mach. Theory 16 (3), 171183 (1981).CrossRefGoogle Scholar
6.Pavlin, G., Automation Position Analysis of Spatial Kinematic Chains Diploma Thesis (TU-Wien, Austria: Institute für Mechanik, 1995).Google Scholar
7.Sciavicco, L. and Siciliano, B., Modelling and Control of Robot Manipulators (Springer, New York, USA, 2004).Google Scholar
8.Tsai, L. W., Robot Analysis: The Mechanics of Serial and Parallel Manipulators (Wiley, New York, USA, 1999).Google Scholar
9.Waldron, K. J. and Kinzel, G. L., Kinematics, Dynamics, and Design of Machinery (Wiley, New York, USA, 1999).Google Scholar
10.Bottema, O. and Roth, B., Theoretical Kinematics (North-Holland Publishing Co., Amsterdam, The Netherlands 1979).Google Scholar
11.Qiulin, D. and Davies, B., Surface Engineering Geometry for Computer-Aided Design and Manufacture (Ellis Horwood Limited, New York, USA, 1987).Google Scholar
12.Simas, H., Martins, D. and Guenther, R., “A Redundant Manipulator to Operate in Confined Spaces,” Proceedings VI Induscon-Conferência Internacional de Aplicações Industriais, Joinville- Brazil (2004).Google Scholar
13.Suresh, K. and Yang, D. C. H., “Constant scallop-height machining of free-form surfaces,” J. Eng. Ind. 116 (2), 253259 (1994).CrossRefGoogle Scholar
14.Bonacorso, N. G., Gonçalves, A. A. Jr. and Dutra, J. C., “Automation of the processes of surface measurement and of deposition by welding for the recovery of rotors of large-scale hydraulic turbines,” J. Mater. Process. Technol. 179 (1–3), 231238 (2006).CrossRefGoogle Scholar
15.Tsai, L. W., Mechanism Design: Enumeration of Kinematic Structures According to Function (CRC-Press, New York, USA, 2001).Google Scholar
16.Pinto, T. L. F., Avaliação de desempenho de robôs industriais utilizando um braço de medição portátil Master's Thesis (Florianópolis, Brazil: Universidade Federal de Santa Catarina, 2001).Google Scholar
17.Rogers, D. F. and Adams, J. A., Mathematical Elements for Computer Graphics (McGraw-Hill, New York, USA, 1989).Google Scholar
18.Whitney, D. E., “Resolved motion rate control of manipulators and human prosteses,” IEEE Trans. Man-Mach. Syst. 10 (2), 4753 (1969).CrossRefGoogle Scholar
19.Marai, G., “A Real-time Approach for Singularity Avoidance in Resolved Motion Rate Control on Robotic Manipulators,” Proceedings of the IEEE International Conference on Robotics and Automation (2002) pp. 1973–1978.Google Scholar
20.Manolescu, N. I., “A unified method for the formation of all planar jointed kinematic chains and Baranov trusses,” Environ. Plan. B 6 (4), 447454 (1979).CrossRefGoogle Scholar