Article contents
Maximum load carrying capacity of mobile manipulators: optimal control approach
Published online by Cambridge University Press: 01 January 2009
Summary
In this paper, finding the maximum load carrying capacity of mobile manipulators for a given two-end-point task is formulated as an optimal control problem. The solution methods of this problem are broadly classified as indirect and direct. This work is based on the indirect solution which solves the optimization problem explicitly. In fixed-base manipulators, the maximum allowable load is limited mainly by their joint actuator capacity constraints. But when the manipulators are mounted on the mobile bases, the redundancy resolution and nonholonomic constraints are added to the problem. The concept of holonomic and nonholonomic constraints is described, and the extended Jacobian matrix and additional kinematic constraints are used to solve the extra DOFs of the system. Using the Pontryagin's minimum principle, optimality conditions for carrying the maximum payload in point-to-point motion are obtained which leads to the bang-bang control. There are some difficulties in satisfying the obtained optimality conditions, so an approach is presented to improve the formulation which leads to the two-point boundary value problem (TPBVP) solvable with available commands in different softwares. Then, an algorithm is developed to find the maximum payload and corresponding optimal path on the basis of the solution of TPBVP. One advantage of the proposed method is obtaining the maximum payload trajectory for every considered objective function. It means that other objectives can be achieved in addition to maximize the payload. For the sake of comparison with previous results in the literature, simulation tests are performed for a two-link wheeled mobile manipulator. The reasonable agreement is observed between the results, and the superiority of the method is illustrated. Then, simulations are performed for a PUMA arm mounted on a linear tracked base and the results are discussed. Finally, the effect of final time on the maximum payload is investigated, and it is shown that the approach presented is also able to solve the time-optimal control problem successfully.
Keywords
- Type
- Article
- Information
- Copyright
- Copyright © Cambridge University Press 2008
References
- 46
- Cited by