Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T18:33:31.929Z Has data issue: false hasContentIssue false

Incorporating verbal feedback into a robot-assisted rehabilitation system

Published online by Cambridge University Press:  09 July 2010

Duygun Erol Barkana*
Affiliation:
Department of Electrical and Electronics Engineering, Yeditepe University, Istanbul 34755, TURKEY
Jadav Das
Affiliation:
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA E-mail: [email protected], [email protected], [email protected]
Furui Wang
Affiliation:
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA E-mail: [email protected], [email protected], [email protected]
Thomas E. Groomes
Affiliation:
Department of Orthopaedics and Rehabilitation, Vanderbilt Stallworth Rehabilitation Hospital, Nashville, TN 37212, USA E-mail: [email protected]
Nilanjan Sarkar
Affiliation:
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA E-mail: [email protected], [email protected], [email protected]
*
*Corresponding author. [email protected], [email protected]

Summary

This paper presents a control architecture, which has the potential to monitor the task and safety issues, to provide assessment of the progress and alter the task parameters, and to incorporate patient's feedback in order to make the necessary modifications to impart effective therapy during the execution of the task in an automated manner. Experimental results are presented to demonstrate the efficacy of the proposed control architecture.

Type
Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Matchar, D. B. and Duncan, P. W., “Cost of stroke,” Stroke Clin Updates 5, 912 (1994).Google Scholar
2.American Heart Association: Heart and Stroke Statistical Update. [Online]. Available at http://www.Americanheart.org/statistics/stroke.htm (2006).Google Scholar
3.Taub, E., “Harnessing brain plasticity through behavioral techniques to produce new treatments in neurorehabilitation,” Am. Psychol. 59 (8), 692704 (2004).CrossRefGoogle ScholarPubMed
4.Krebs, H. I., Ferraro, M., Buerger, S. P., Newbery, M. J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B. T. and Hogan, N., “Rehabilitation robotics: Pilot trial of a spatial extension for MIT-Manus,” J. Neuroeng. Rehab. 1, 5 (2004).CrossRefGoogle ScholarPubMed
5.Lum, P. S., Burgar, C. G., Van der Loos, H. F. M., Shor, P. C., Majmundar, M. and Yap, R., “MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study,” J. Rehab. Res. Devel. 43, 631642 (2006).CrossRefGoogle ScholarPubMed
6.Loureiro, R., Amirabdollahian, F., Topping, M., Driessen, B. and Harwin, W., “Upper limb mediated stroke therapy – GENTLE/s approach,” Auton. Robot 15, 3551 (2003).CrossRefGoogle Scholar
7.Nef, T., Guidali, M. and Riener, R., “ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation,” Appl. Bionics Biomech. 6 (2), 127142 (2009).CrossRefGoogle Scholar
8.Johnson, M. J., “Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke,” J. NeuroEng. Rehab. 3 (29), 16 (2006).CrossRefGoogle ScholarPubMed
9.Reinkensmeyer, D. J., Pang, C. T., Nessler, J. A. and Painter, C. C., “Web-based telerehabilitation for the upper extremity after stroke,” IEEE Trans. Neural Syst. Rehab. Eng. 10 (2), 102108 (2002).CrossRefGoogle ScholarPubMed
10.Mihelj, M., Podobnik, J. and Munih, M., “HEnRiE – Haptic Environment for Reaching and Grasping Exercise,” Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics Scottsdale, AZ, USA (Oct. 19–22, 2008) pp. 907912.Google Scholar
11.Podobnik, J., Munih, M. and Cinkelj, J., “HARMiS – Hand and Arm Rehabilitation System,” Proceedings of the 7th ICDVRAT with ArtAbilitation, Maia, Portugal (2008) pp. 237244.Google Scholar
12.Erol, D. and Sarkar, N., “Coordinated control of assistive robotic devices for activities of daily living tasks,” IEEE Trans. Neural Syst. Rehab. Eng. 16, 278285 (2008).CrossRefGoogle ScholarPubMed
13.Erol, D. and Sarkar, N., “Intelligent control for robotic rehabilitation after stroke,” J. Intell. Robot. Syst. 50 (3), 341360 (2007).CrossRefGoogle Scholar
14.Erol, D. and Sarkar, N., “Intelligent Control Framework for Robotic Rehabilitation after Stroke”, Proceedings of the IEEE/RAS International Conference on Robotics and Automation, Rome, Italy (2007) pp. 12381243.Google Scholar
15.Barkana, D. E. and Sarkar, N., “Towards a smooth human-robot interaction for rehabilitation robotic systems,” Adv. Robot. 23 (12–13), 16411662 (2009).CrossRefGoogle Scholar
16.Barkana, D. E., “Towards intelligent robot-assisted rehabilitation systems,” Int. J. Syst. Sci. 41 (7), 729745 (2010) (doi:10.1080/00207720903230039).CrossRefGoogle Scholar
17.PUMA 560 Related Sites on the Internet. [Online]. Available at http://www.ee.ualberta.ca/~jasmith/puma/pumasites.html.Google Scholar
18.Erol, D. and Sarkar, N., “Design and implementation of an assistive controller for rehabilitation robotic systems,” Int. J. Adv. Robot. Syst. 4 (3), pp. 271278 (2007).CrossRefGoogle Scholar
19.Pires, J. N.Robot-by-voice: Experiments on commanding on industrial robot using the human voice,” Ind. Robot: Int. J. 32 (6), 505511(7) (2005).CrossRefGoogle Scholar
20.Kawamura, K., Bishay, M., Bagchi, S., Saad, A., Iskarous, M. and Fumoto, M., “Intelligent User Interface for a Rehabilitation Robot,” Fourth International Conference on Rehabilitation Robotics, Wilmington, DE (1994) pp. 3135.Google Scholar
21.Zhou, R., Ng, K. P. and Ng, Y. S., “A voice controlled robot using neural network,” Proc. 1994 Second Aust. N.Z. Conf. Intell. Inf. Syst. 29 (2), 130134 (1994).Google Scholar
22.Neco, R. P., Reinoso, O., Sabater, J. M., Perez, C. and Jimenez, L. M., “Advances in natural language interaction in mobile robots used for practice education,” Proc. World Autom. Cong. 15, 247252 (2004).Google Scholar
23.Leng, G. W. and Mittal, D. P., “A Robotic System with AI,” Fourth IEEE Region 10 International Conference, TENCON, Bombay, India (1989) pp. 9991002.CrossRefGoogle Scholar
24.Chatterjee, A., Pulasinghe, K., Watanabe, K. and Izumi, K., “A particle-swarm-optimized fuzzy-neural network for voice controlled robot systems,” IEEE Trans. Ind. Electron. 52 (6), 14781489 (2005).CrossRefGoogle Scholar
25.Jayawardena, C., Watanabe, K. and Izumi, K., “Controlling a robot manipulator with fuzzy voice commands using a probabilistic neural network,” Neural Comput. Appl. 16 (2), 155166 (2007).CrossRefGoogle Scholar
26.Sigurdsson, S., Petersen, K. B. and Lehn-Schioler, T., “Mel frequency cepstral coefficients: An evaluation of robustness of MP3 encoded music,” Proceedings of the Seventh International Conference on Music Information Retieval (ISMIR), Vicoria, Canada (2006) 286289.Google Scholar
27.Choi, E. H. C., “On compensating the mel-frequency cepstral coefficients for noisy speech recognition,” Proc. 29th Aust. Comput. Sci. Conf., Hobart, Australia, 48, 4954 (2006).Google Scholar
28.Data Acquisition Toolbox User's Guide, Matlab R2007a, Mathworks.Google Scholar
29.Rabiner, L. R. and Sambur, M. R., “An algorithm for determining the endpoints of isolated utterences,” Bell Syst. Tech. J. 54 (2), 297315 (1975).CrossRefGoogle Scholar
30.Koutsoukos, X. D., Antsaklis, P. J., Stiver, J. A. and Lemmon, M. D., “Supervisory control of hybrid systems,” IEEE Special Issue on Hybrid Syst.: Theory Appl. 88, 10261049 (2000).Google Scholar
31.Antsaklis, P. J. and Koutsoukos, X. D., “Hybrid Systems: Review and Recent Progress,” In: Software-Enabled Control: Information Technologies for Dynamical Systems (Samad, T. and Balas, G., eds.) (IEEE Press, 2003) pp. 129.Google Scholar