Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-29T03:32:38.249Z Has data issue: false hasContentIssue false

Full dynamic model of 3-UPU translational parallel manipulator for model-based control schemes

Published online by Cambridge University Press:  17 February 2022

Ali Hassani
Affiliation:
Advanced Robotics and Automated Systems (ARAS), Industrial Control Center of Excellence, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 1969764499, Iran
S. A. Khalilpour
Affiliation:
Advanced Robotics and Automated Systems (ARAS), Industrial Control Center of Excellence, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 1969764499, Iran
Abbas Bataleblu
Affiliation:
Advanced Robotics and Automated Systems (ARAS), Industrial Control Center of Excellence, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 1969764499, Iran
Hamid D. Taghirad*
Affiliation:
Advanced Robotics and Automated Systems (ARAS), Industrial Control Center of Excellence, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 1969764499, Iran
*
*Corresponding author. E-mail: [email protected].

Abstract

Optimal mechanical design, model-based control, and robot dynamic calibration mainly rely on the analytical formulation of robot dynamics. In this paper, the kinematics equations of a general 3-UPU translational parallel manipulator (TPM) are derived, and then, by using the principle of the virtual work theorem, the full implicit dynamic model is derived. Furthermore, by making some modifications, the explicit dynamic formulation of the robot is attained, which is the basis of a wide range of advanced model-based controllers. To validate the proposed formulation, a prototype of the 3-UPU TPM is modeled in MSC-ADAMS® software, and the results of the dynamic formulation are validated using this model. The results show the high accuracy of the proposed dynamic formulation presented in this article.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hamida, I. B., Laribi, M. A., Mlika, A., Romdhane, L. and Zeghloul, S., “Dimensional synthesis and performance evaluation of four translational parallel manipulators,” Robotica 39(2), 233249 (2020). [Online]. Available: https://doi.org/10.1017%2Fs026357472000034x CrossRefGoogle Scholar
Bataleblu, A., Khorrambakht, R. and Taghirad, H. D., “Robust H $\infty$ -based control of ARAS-diamond: A vitrectomy eye surgery robot,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(20), 095440622097933 (2020). [Online]. Available: https://doi.org/10.1177%2F0954406220979334 Google Scholar
Gregorio, R. D., “A review of the literature on the lower-mobility parallel manipulators of 3-UPU or 3-URU type,” Robotics 9(1), 5 (2020). [Online]. Available: https://doi.org/10.3390%2Frobotics9010005 CrossRefGoogle Scholar
Hu, B., Yao, Y., Wu, P. and Lu, Y., “A comparison study of two 3-UPU translational parallel manipulators,” Int. J. Adv. Robot. Syst. 10(4), 190 (2013). [Online]. Available: https://doi.org/10.5772%2F53394 CrossRefGoogle Scholar
Gregorio, R. D., “Kinematics of the 3-UPU Wrist,” Mech. Mach. Theory 38(3), 253263 (2003). [Online]. Available: https://doi.org/10.1016%2Fs0094-114x%2802%2900066-6 Google Scholar
Lu, Y., Shi, Y. and Hu, B., “Kinematic analysis of two novel 3UPU I and 3UPU II PKMs,” Robot. Autonom. Syst. 56(4), 296305 (2008). [Online]. Available: https://doi.org/10.1016%2Fj.robot.2007.09.005 CrossRefGoogle Scholar
Tsai, L.-W., “Kinematics of a Three-Dof Platform with Three Extensible Limbs,” In: Recent Advances in Robot Kinematics (Springer Netherlands, Dordrecht, 1996) pp. 401410. [Online]. Available: https://doi.org/https://doi.org/10.1007%2F978-94-009-1718-7_40 CrossRefGoogle Scholar
Tsai, L.-W. and Joshi, S., “Kinematics and optimization of a spatial 3-UPU parallel manipulator,” J. Mech. Des. 122(4), 439446 (1999). [Online]. Available: https://doi.org/10.1115%2F1.1311612 CrossRefGoogle Scholar
Yang, Y. and Brien, J. F. OBrien, “Singularity-Free Workspace Design for the Translational 3-UPU Parallel Robot,” In: 2010 IEEE International Conference on Automation Science and Engineering (IEEE, Toronto, ON, Canada, August 2010). [Online]. Available: https://doi.org/10.1109%2Fcoase.2010.5584559 Google Scholar
Chebbi, A., Affi, Z. and Romdhane, L., “Kinetostatic and Singularity Analyses of the 3-UPU Translational Parallel Robot,” In: Computational Kinematics (Springer, Berlin, Heidelberg, 2009) pp. 6168.Google Scholar
Han, C., Kim, J., Kim, J. and Park, F. C., “Kinematic sensitivity analysis of the 3-UPU parallel mechanism,” Mech. Mach. Theory 37(8), 787798 (2002). [Online]. Available: https://doi.org/10.1016%2Fs0094-114x CrossRefGoogle Scholar
Chebbi, A.-H., Affi, Z. and Romdhane, L., “Prediction of the pose errors produced by joints clearance for a 3-UPU parallel robot,” Mech. Mach. Theory 44(9), 17681783 (2009). [Online]. Available: https://doi.org/10.1016%2Fj.mechmachtheory.2009.03.006 CrossRefGoogle Scholar
Hraiech, S. E., Chebbi, A. H., Affi, Z. and Romdhane, L., “Genetic algorithm coupled with the krawczyk method for multi-objective design parameters optimization of the 3-UPU manipulator,” Robotica 38(6), 11381154 (2019). [Online]. Available: https://doi.org/10.1017%2Fs0263574719001292 CrossRefGoogle Scholar
Bhutani, G. and Dwarakanath, T. A., “Practical feasibility of a high-precision 3-UPU parallel mechanism,” Robotica 32(3), 341355 (2013). [Online]. Available: https://doi.org/10.1017%2Fs0263574713000696 CrossRefGoogle Scholar
Bhutani, G. and Dwarakanath, T., “Novel design solution to high precision 3 axes translational parallel mechanism,” Mech. Mach. Theory 75(1), 118130 (2014). [Online]. Available: https://doi.org/10.1016%2Fj.mechmachtheory.2013.11.010 CrossRefGoogle Scholar
Staicu, S. and Popa, C., “Dynamics of the translational 3-UPC parallel manipulator,” U.P.B. Sci. Bull., Series D 76(4), 312.Google Scholar
Hraiech, S. E., Houidi, A., Affi, Z. and Romdhane, L., “Reduced Inverse Dynamic Model of Parallel Manipulators Based on the Lagrangian Formalism,” In: Design and Modeling of Mechanical Systems - II (Springer International Publishing, Cham2015) pp. 479487. [Online]. Available: https://doi.org/10.1007%2F978-3-319-17527-0_48 Google Scholar
Hraiech, S. E., Chebbi, A., Affi, Z. and Romdhane, L., “Error estimation and sensitivity analysis of the 3-UPU translational parallel robot due to design parameter uncertainties,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(8), 27132727 (2018). [Online]. Available: https://doi.org/10.1177%2F0954406218793673 Google Scholar
Hu, B., Lu, Y. and Mao, H., “Inverse Dynamic Modeling of Two Unsymmetrical 3UPU Parallel Manipulators,” In: Intelligent Robotics and Applications (Springer, Berlin, Heidelberg, 2009) pp. 580591. [Online]. Available: https://doi.org/10.1007%2F978-3-642-10817-4_58 CrossRefGoogle Scholar
Xiangzhou, Z., Yougao, L. and Hongzan, B., “Inverse dynamics of 3-UPU Parallel Mechanism with Pure Rotation based on D’alembert Principle,” In: 2007 International Conference on Mechatronics and Automation (2007) (IEEE, Harbin, China, August 2007) pp. 28422847. [Online]. Available: https://doi.org/10.1109/ICMA.2007.4304010 CrossRefGoogle Scholar
Taghirad, H. D., Parallel Robots (CRC Press, USA, February 2013). [Online]. Available: https://doi.org/10.1201%2Fb16096 CrossRefGoogle Scholar
Tsai, L.-W., Robot Analysis: The Mechanics of Serial and Parallel Manipulators (John Wiley & Sons, USA, 1999).Google Scholar
Kalani, H., Rezaei, A. and Akbarzadeh, A., “Improved general solution for the dynamic modeling of Gough–Stewart platform based on principle of virtual work,” Nonlinear Dynam. 83(4), 23932418 (2015). [Online]. Available: https://doi.org/10.1007%2Fs11071-015-2489-z CrossRefGoogle Scholar
Arian, A., Danaei, B., Abdi, H. and Nahavandi, S., “Kinematic and dynamic analysis of the gantry-tau, a 3-DoF translational parallel manipulator,” Appl. Math. Model. 51(1), 217231 (2017). [Online]. Available: https://doi.org/10.1016%2Fj.apm.2017.06.012 CrossRefGoogle Scholar
Mazare, M., Taghizadeh, M. and Najafi, M. R., “Inverse dynamics of a 3-p[2(US)] translational parallel robot,” Robotica 37(4), 708728 (2018). [Online]. Available: https://doi.org/10.1017 CrossRefGoogle Scholar
Oftadeh, R., Aref, M. M. and Taghirad, H. D., “Explicit Dynamics Formulation of Stewart-Gough Platform: A Newton-Euler Approach,” In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Taipei, Taiwan, October 2010). [Online]. Available: https://doi.org/10.1109%2Firos.2010.5653157 Google Scholar
Shang, W. and Cong, S., “Robust nonlinear control of a planar 2-DOF parallel manipulator with redundant actuation,” Robot. Comput.-Integr. Manufact. 30(6), 597604 (2014). [Online]. Available: https://doi.org/10.1016%2Fj.rcim.2014.04.004 CrossRefGoogle Scholar
Bataleblu, A., Motaharifar, M., Abedlu, E. and Taghirad, H. D., “Robust H $\infty$ Control of a 2rt Parallel Robot for Eye Surgery,” In: 2016 4th International Conference on Robotics and Mechatronics(ICROM). (IEEE, Tehran, Iran, October 2016). [Online]. Available: https://doi.org/10.1109%2Ficrom.2016.7886835 Google Scholar
Babaghasabha, R., Khosravi, M. A. and Taghirad, H. D., “Adaptive robust control of fully-constrained cable driven parallel robots,” Mechatronics 25(1), 2736 (2015). [Online]. Available: https://doi.org/10.1016%2Fj.mechatronics.2014.11.005 CrossRefGoogle Scholar
Zeinali, M. and Notash, L., “Adaptive sliding mode control with uncertainty estimator for robot manipulators,” Mech. Mach. Theory 45(1), 8090 (2010). [Online]. Available: https://doi.org/10.1016%2Fj.mechmachtheory.2009.08.003 CrossRefGoogle Scholar
Paccot, F., Andreff, N. and Martinet, P., “A review on the dynamic control of parallel kinematic machines: Theory and experiments,” Int. J. Robot. Res. 28(3), 395416 (2009). [Online]. Available: https://doi.org/10.1177%2F0278364908096236 CrossRefGoogle Scholar
Carricato, M. and Gosselin, C., “On the modeling of leg constraints in the dynamic analysis of gough/stewart-type platforms,” J. Comput. Nonlinear Dynam. 4(1) (2008). [Online]. Available: https://doi.org/10.1115%2F1.3007974 Google Scholar
Vakil, M., Pendar, H. and Zohoor, H., “Comments to the: “Closed-form dynamic equations of the general stewart platform through the Newton–Euler approach” and “a Newton–Euler formulation for the inverse dynamics of the stewart platform manipulator”,” Mech. Mach. Theory 43(10), 13491351 (2008). [Online]. Available: https://doi.org/10.1016%2Fj.mechmachtheory.2008.02.015 CrossRefGoogle Scholar
Zhao, Y. and Gao, F., “Inverse dynamics of the 6-dof out-parallel manipulator by means of the principle of virtual work,” Robotica 27(2), 259268 (2009). [Online]. Available: https://doi.org/10.1017%2Fs0263574708004657 CrossRefGoogle Scholar
Ljung, L. and Singh, R., “Version 8 of the matlab system identification toolbox,” IFAC Proc. Vol. 45(16), 1826–1831 (2012). [Online]. Available: https://doi.org/10.3182%2F20120711-3-be-2027.00061 Google Scholar