Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T21:25:59.010Z Has data issue: false hasContentIssue false

Fall detection in walking robots by multi-way principal component analysis

Published online by Cambridge University Press:  01 March 2009

J. G. Daniël Karssen*
Affiliation:
Department of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
Martijn Wisse
Affiliation:
Department of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
*
*Corresponding author. E-mail: [email protected]

Summary

Large disturbances can cause a biped to fall. If an upcoming fall can be detected, damage can be minimized or the fall can be prevented. We introduce the multi-way principal component analysis (MPCA) method for the detection of upcoming falls. We study the detection capability of the MPCA method in a simulation study with the simplest walking model. The results of this study show that the MPCA method is able to predict a fall up to four steps in advance in the case of single disturbances. In the case of random disturbances the MPCA method has a successful detection probability of up to 90%.

Type
Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hobbelen, D. G. E. and Wisse, M.. “Limit Cycle Walking,” In: Humanoid Robots, Human-like Machines (Hackel, M., ed.) Chapter 14. (I-Tech Education and Publishing, Vienna, Austria, 2007).Google Scholar
2.McGeer, T.. “Passive dynamic walking,” Int. J. Rob. Res. 9 (2), 6282 (1990).Google Scholar
3.Collins, S. H., Ruina, A., Tedrake, R. and Wisse, M.. “Efficient bipedal robots based on passive-dynamic walkers,” Science 307 (5712), 10821085 (2005).Google Scholar
4.Hobbelen, D. G. E. and Wisse, M.. “A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm,” IEEE Trans. Rob. 23 (6), 12131224 (2007).CrossRefGoogle Scholar
5.Hobbelen, D. G. E. and Wisse, M., “Swing leg retraction for limit cycle walkers improves disturbance rejection,” IEEE Trans. Rob. 24 (2), 377389 (2008).Google Scholar
6.Hobbelen, D. G. E. and Wisse, M., “Ankle actuation for limit cycle walkers,” Int. J. Rob. Res. (in press).Google Scholar
7.Hobbelen, D. G. E. and Wisse, M.. “Upper body feedback and feedforward control in limit cycle walkers,” IEEE Trans. Rob. (in review).Google Scholar
8.Vukobratovic, M., Frank, A. and Juricic, D.. “On the stability of biped locomotion,” IEEE Trans. Biomed. Eng. 17 (1), 2536 (1970).Google Scholar
9.Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N. and Fujita, M.. “The intelligent Asimo: System Overview and Integration,” Proceedings of International Conference on Intelligent Robots and Systems, Lausanne, Switzerland (Sep. 30–4 Oct. 2002) pp. 2478–2483.Google Scholar
10.Yamaguchi, J., Soga, E., Inoue, S. and Takanishi, A.. “Development of a bipedal humanoid robot-control method of wholebody cooperative dynamic biped walking,” Proceedings of 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, pp. 368–374 (1999).Google Scholar
11.Nomikos, P. and MacGregor, J.F.. “Monitoring batch processes using multiway principal component analysis,” AIChE J. 40 (8), 13611375 (1994).CrossRefGoogle Scholar
12.Kourti, T., Lee, J. and MacGregor, J. F., “Experiences with industrial applications of projection methods for multivariate statistical process control,” Comput. Chem. Eng. 20, 745750 (1996).CrossRefGoogle Scholar
13.Ramaker, H. J., SprangE. N. M., van E. N. M., van, Westerhuis, J. A. and Smilde, A. K., “Fault detection properties of global, local and time evolving models for batch process monitoring,” J. Process Control 15 (7), 799805 (2005).CrossRefGoogle Scholar
14.MacGregor, J. F., Rannar, S. and Wold, S., “Adaptive batch monitoring using hierarchical PCA,” Chemomet. Intell. Lab. Sys. 41, 7381 (1998).Google Scholar
15.Nomikos, P., “Statistical Process Control of Batch Processes”, Chem. Eng. Dept., (McMaster University, Hamilton, ON, Canada (1995).Google Scholar
16.Geladi, P. and Kowalski, B. R.. “Partial least-squares regression: A tutorial,” Anal. Chim. Acta 185, 117 (1986).Google Scholar
17.Hahn, G. and Meeker, W., “Statistical Intervals: A Guide for Practitioners”, Wiley, New York (1991).Google Scholar
18.Garcia, M. S., Chatterjee, A., Ruina, A. and Coleman, M. J., “The simplest walking model: Stability, complexity, and scaling,” ASME J. Biomech. Eng. 120 (2), 281288 (1998).Google Scholar