Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T23:36:18.419Z Has data issue: false hasContentIssue false

Development and experimental evaluation of multi-fingered robot hand with adaptive impedance control for unknown environment grasping

Published online by Cambridge University Press:  27 August 2014

Ting Zhang
Affiliation:
Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, P. R. China
Li Jiang*
Affiliation:
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, P. R. China
Shaowei Fan
Affiliation:
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, P. R. China
Xinyu Wu
Affiliation:
Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
Wei Feng
Affiliation:
Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
*
*Corresponding author. E-mail: [email protected]

Summary

This paper presents adaptive impedance controllers with adaptive sliding mode friction compensation for anthropomorphic artificial hand. A five-fingered anthropomorphic artificial hand with multi-sensory and Field-Programmable Gate Arra (FPGA)-based control hardware and software architecture is designed to fulfill the requirements of the grasping force controller. In order to improve the force-tracking precision, the indirect adaptive algorithm was applied to estimate the parameters of the environment. The generalized momentum-based disturbance observer was applied to estimate the contact force from the torque sensor. Based on the sensors of the finger, an adaptive sliding mode friction compensation algorithm was utilized to improve the accuracy of the position control. The performances of the force-tracking impedance controller and position-based joint impedance control for the five-fingered anthropomorphic artificial hand are analyzed and compared in this paper. Furthermore, the performances of the force-tracking impedance controller with environmental parameters adaptive estimation and without environmental parameters estimation are analyzed and compared. Experimental results prove that accurate force-tracking and stable torque/force response under uncertain environments of unknown stiffness and position can be achieved with the proposed adaptive force-tracking impedance controller with friction compensation on five-finger artificial hand.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kawasaki, H., Komatsu, T. and Uchiyama, K., “Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II,” IEEE/ASME Trans. Mechatron. 7 (3), 296303 (2002).Google Scholar
2.Liu, H., Meusel, P., Hirzinger, G., Jin, M. H., Liu, Y. and Xie, Z. W., “The modular multisensory DLR-HIT-hand: Hardware and software architecture,” IEEE/ASME Trans. Mechatron. 13 (4), 461469 (2008).Google Scholar
3.Zollo, L., Roccella, S., Guglielmelli, E., Carrozza, M. C. and Dario, P., “Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications,” IEEE/ASME Trans. Mechatron. 12 (4), 418429 (2007).Google Scholar
4.Pons, J. L., Rocon, E., Ceres, R., Reynaerts, D., Saro, B., Levin, S. and Moorleghem, W. V., “The MANUS-HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects,” Auton. Robots 16 (2), 143163 (2004).Google Scholar
5.Cipriani, C., Controzzi, M. and Carrozza, M. C., “Objectives, criteria and methods for the design of the SmartHand transradial prosthesis,” Robotica 28, 919927 (2010).Google Scholar
6.Johannes, M. S., Bigelow, J. D., Burck, J. M., Harshbarger, S. D., Kozlowski, M. V. and Dorens, T. V., “An overview of the developmental process for the modular prosthetic limb,” Johns Hopkins APL Tech. Dig. 30 (3), 207216 (2011).Google Scholar
7.Li, G. X., Liu, H. and Zhang, W. Z., “Development of multi-fingered robotic hand with coupled and directly self-adaptive grasp,” Int. J. Humanoid Robot. 9 (4), 1250034–1–18 (2012).Google Scholar
8.Pons, J. L., Ceres, R. and Pfeiffer, F., “Multifingered dextrous robotics hand design and control: A review,” Robotica 17, 661674, (1999).Google Scholar
9.Schulz, S., Pylatiuk, C., Reischl, M., Martin, J., Mikut, R. and Bretthauer, G., “A hydraulically driven multifunctional prosthetic hand,” Robotica 23, 293299 (2005).Google Scholar
10.Kyberd, P., Light, C., Chappell, P. H., Nightingale, J. M., Whatley, D. and Evans, M., “The design of anthropomorphic prosthetic hands: A study of the southampton hand,” Robotica 19, 593600 (2001).Google Scholar
11.Heim, W., “Microprocessor technology for powered upper extremity prosthetic control systems,” Robotica 23, 275276 (2005).Google Scholar
12.Parmiggiani, A., Maggiali, M., Natale, L., Norl, F., Schmitz, A., Tsagarakis, N., Victor, J. S., Becchi, F., Sandini, G. and Metta, G., “The design of the iCub humanoid robot,” Int. J. Humanoid Robot. 9 (4), 1250027–1–24 (2012).CrossRefGoogle Scholar
13.Huang, H., Pang, Y. J., Jiang, L., Fan, S. W., Wang, X. Q. and Liu, H., “Underactuated hand dynamic modeling, its real-time simulation, and control,” Int. J. Humanoid Robot. 7 (4), 609634 (2010).Google Scholar
14.Zhang, T., Jiang, L. and Liu, H., “A novel grasping force control strategy for multi-fingered prosthetic hand,” J. Cent. South Univ. 19 (6), 15371542 (2012).Google Scholar
15.Zhang, T., Fan, S. W., Liu, H. and Jiang, L., “Development and experiment analysis of anthropomorphic prosthetic hand with flexible three-axis tactile sensor,” Int. J. Humanoid Robot. 10 (3), 1350028–1–1350028–24 (2013).Google Scholar
16.Cutkosky, M. R., “On grasp choice, grasp models, and the design of hands for manufacturing tasks,” IEEE Trans. Robot. Autom. 5 (3), 269279 (1989).Google Scholar
17.Seraji, H. and Colbaugh, R., “Force Tracking in Impedance Control [C],” IEEE International Conference on Robotics and Automation, Georgia, IEEE Press (1993), pp. 499506.Google Scholar
18.Hogan, N., “Impedance control an approach to manipulation. I-Theory. II-Implementation. III-applications,” ASME Trans. J. Dyn. Syst. Meas. Control (ISSN 0022-0434), 107, 124 (1985).Google Scholar
19.Biagiotti, L., Liu, H., Hirzinger, G. and Melchiorri, C., “Cartesian Impedance Control for Dexterous Manipulation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, IEEE Press (2003) pp. 32703275.Google Scholar
20.Wei, R., Gao, X., Jin, M., Liu, Y., Liu, H., Seitz, N., Gruber, R. and Hirzinger, G., “FPGA based Hardware Architecture for HIT/DLR Hand,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, IEEE Press (2005) pp. 523528.Google Scholar
21.Erickson, D., Weber, M. and Sharf, I., “Contact stiffness and damping estimation for robotic systems [J],” Int. J. Robot. Res. 22 (1), 4157 (2003).Google Scholar
22.Seraji, H. and Colbaugh, R., “Force tracking in impedance control [J],” Int. J. Robot. Res. 16 (1), 97117 (1997).Google Scholar
23.Santis, D., Siciliano, B., Luca, A. D. and Bicchi, A., “An atlas of physical human–robot interaction [J],” Mech. Mach. Theory 43, 253270 (2008).CrossRefGoogle Scholar
24.Lasky, T. and Hsia, T. C., “On Force-Tracking Impedance Control of Robot Manipulators [C],” IEEE International Conference on Robotics and Automation, Sacramento, IEEE Press (1991), pp. 274280.Google Scholar
25.Scherillo, P., Siciliano, B., Zollo, L., Carrozza, M., Guglielmelli, M. and Dario, P., “Parallel Force/Position Control of a Novel Biomechatronic Hand Prosthesis [C],” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, IEEE Press (2003), pp. 920925.Google Scholar
26.Jung, S., Hsia, T. C. and Bonitz, R. G., “Force tracking impedance control of robot manipulators under unknown environment [J],” IEEE Trans. Control Syst. Technol. 12 (3), 474483 (2004).Google Scholar
27.Dillon, G. and Horch, K., “Direct neural sensory feedback and control of a prosthetic arm [J],” IEEE Trans. Neural Syst. Rehabil. Eng. 13 (4), 468472 (2005).Google Scholar
28.Jung, S., Yim, S. B. and Hsia, T. C., “Experimental Studies of Neural Network Impedance Force Control for Robot Manipulators [C],” IEEE International Conference on Robotics and Automation, Seoul, IEEE Press (2001), pp. 34533458.Google Scholar
29.Kiguchi, K. and Fukuda, T., “Position/force control of robot manipulators for geometrically unknown objects using fuzzy neural networks [J],” IEEE Trans. Ind. Electron. 47, 641649 (2000).Google Scholar
30.Jung, S., Hsia, T. C. and Bonitz, R. G., “Force tracking impedance control of robot manipulators under unknown environment [J],” IEEE Trans. Control Syst. Technol. 12 (3), 474483 (2004).Google Scholar
31.Tzafestas, C. S., Msirdi, N. K. and Manamani, N., “Adaptive impedance control applied to a pneumatic legged robot [J],” Int. J. Robot. Res. 20 (2–4), 105129 (1997).Google Scholar
32.Zhang, T., Liu, H., Jiang, L., Fan, S. and Yang, J., “Development of a flexible 3-D tactile sensor system for anthropomorphic artificial hand,” IEEE Sens. J. 13 (2), 510518 (2013).Google Scholar
33.Ohka, M., Mitsuya, Y., Higashioka, I. and Kabeshita, H., “An experimental optical three-axis tactile sensor for micro-robots,” Robotica 23, 457465 (2005).Google Scholar
34.Ohka, M., Mitsuya, Y., Matsunaga, Y. and Takeuchi, S., “Sensing characteristics of an optical three-axis tactile sensor under combined loading,” Robotica 22, 213221 (2004).Google Scholar