Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T04:35:42.987Z Has data issue: false hasContentIssue false

Design and kinematic characterization of a surgical manipulator with a focus on treating osteolysis

Published online by Cambridge University Press:  03 December 2013

Ryan J. Murphy*
Affiliation:
Research and Engineering Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
Michael D. M. Kutzer
Affiliation:
Research and Engineering Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
Sean M. Segreti
Affiliation:
Department of Electrical Engineering, University of Maryland, College Park, MD 20742, USA
Blake C. Lucas
Affiliation:
Intel Corporation, Santa Clara, CA 95054, USA
Mehran Armand
Affiliation:
Research and Engineering Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
*
*Corresponding author. E-mail: [email protected]

Summary

This paper presents a cable-driven dexterous manipulator with a large, open lumen. One specific application for the manipulator is the treatment of the degeneration of bone tissue (osteolysis) during a less-invasive hip revision surgery. Rigid tools used in traditional approaches limit the surgeons' ability to comprehensively treat the osteolysis due to the complex geometries of the lesion. The surgical scenario, testing, kinematic modeling, and image-based inverse kinematics are described. Testing shows 94% coverage of a lesion wall; the kinematic model describes manipulator notch positions within 0.15 mm, while the image-based inverse kinematics has 0.36 mm error. This manipulator is potentially useful in treating osteolytic lesions through (1) effective lesion exploration compared to conventional techniques, and (2) rapidly performing inverse kinematics from visual feedback.

Type
Articles
Copyright
Copyright © Johns Hopkins University Applied Physics Laboratory LLC 2013, published by Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clohisy, J. C., Calvert, G., Tull, F., McDonald, D. and Maloney, W. J., “Reasons for revision hip surgery: A retrospective review,” Clin. Orthop. Relat. Res. (429), 188192 (2004).Google Scholar
2. Engh, C. A. Jr., Egawa, H., Beykirch, S. E., Hopper, R. H. Jr. and Engh, C. A., “The quality of osteolysis grafting with cementless acetabular component retention,” Clin. Orthop. Relat. Res. 465, 150154 (2007).Google Scholar
3. Kutzer, M. D. M., Segreti, S. M., Brown, C. Y., Armand, M., Taylor, R. H. and Mears, S. C., “Design of a New Cable-Driven Manipulator with a Large Open Lumen: Preliminary Applications in the Minimally-invasive Removal of Osteolysis,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Shanghai, China (May 9–13, 2011), pp. 29132920.Google Scholar
4. Liu, W. P., Lucas, B. C., Guerin, K. and Plaku, E., “Sensor and Sampling-Based Motion Planning for Minimally Invasive Robotic Exploration of Osteolytic Lesions,” Proceedings of the IEEE/RSJ International Intelligent Robots and Systems (IROS) Conference, San Francisco, CA (Sep. 25–30, 2011) pp. 13461352.Google Scholar
5. Murphy, R. J., Moses, M. S., Kutzer, M. D. M., Chirikjian, G. S. and Armand, M., “Constrained Workspace Generation for Snake-Like Manipulators with Applications to Minimally Invasive Surgery,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Karlsruhe, Germany (May 6–10, 2013) pp. 53415347.Google Scholar
6. Sturges, R. and Laowattana, S., A Voice-Actuated, Tendon-Controlled Device for Endoscopy (MIT Press, Cambridge, MA, 1995) pp. 603617.Google Scholar
7. Furusho, J., Katsuragi, T., Kikuchi, T., Suzuki, H., Tanaka, H., Chiba, Y. and Horio, H., “Curved multi-tube systems for fetal blood sampling and treatments of organs like brain and breast,” Int. J. Comput. Assist. Radiol. Surg. 1, 223226 (2006).Google Scholar
8. Harada, K., Tsubouchi, K., Fujie, M. and Chiba, T., “Micro Manipulators for Intrauterine Fetal Surgery in an Open MRI,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Barcelona, Spain (Apr. 18–22, 2005) pp. 502507.Google Scholar
9. Sears, P. and Dupont, P., “Inverse Kinematics of Concentric Tube Steerable Needles,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Roma, Italy (Apr. 10–14, 2007) pp. 18871892.Google Scholar
10. Webster, R., Romano, J. and Cowan, N., “Mechanics of precurved-tube continuum robots,” IEEE Trans. Robot. 25 (1), 6778 (2009).Google Scholar
11. Dario, P., Carrozza, M., Marcacci, M., D'Attanasio, S., Magnami, B., Tonet, O. and Megali, G., “A novel mechatronic tool for computer-assisted arthroscopy,” IEEE Trans. Inf. Technol. Biomed. 4 (1), 1529 (2000).Google Scholar
12. Reynaerts, D., Peirs, J. and Van Brussel, H., “Shape memory micro-actuation for a gastro-intestinal intervention system,” Sensors Actuators 77 (2), 157166 (1999).Google Scholar
13. Hillel, A. T., Kapoor, A., Simaan, N., Taylor, R. H. and Flint, P., “Applications of robotics for laryngeal surgery,” Otolaryngol. Clin. North Am. 41 (4), 781791 (2008).Google Scholar
14. Simaan, N., Taylor, R. and Flint, P., “High Dexterity Snake-like Robotic Slaves for Minimally Invasive Telesurgery of the Upper Airway,” Medical Image Computing and Computer-Assisted Intervention. MICCAI 2004, LNCS 3217, 1724 (2004).Google Scholar
15. Simaan, N., Xu, K., Wei, W., Kapoor, A., Kazanzides, P., Taylor, R. and Flint, P., “Design and integration of a telerobotic system for minimally invasive surgery of the throat,” Int. J. Robot. Res. 28 (9), 11341153 (2009).CrossRefGoogle ScholarPubMed
16. Peirs, J., Reynaerts, D., Van, H. Brussel, De Gersem, G. and Tang, H.-W., “Design of an Advanced Tool Guiding System for Robotic Surgery,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Taipei, Taiwan (Sep. 14–19, 2003) pp. 26512656.Google Scholar
17. Vaida, C., Plitea, N., Pisla, D. and Gherman, B., “Orientation module for surgical instruments: a systematical approach,” Meccanica 48 (1), 145158 (2013). [Online]. Available: http://link.springer.com/article/10.1007/s11012-012-9590-x Google Scholar
18. Degani, A., Choset, H., Wolf, A. and Zenati, M. A., “Highly Articulated Robotic Probe for Minimally Invasive Surgery,” Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2006, Orlando, FL, USA (May 15–19, 2006) pp. 41674172.Google Scholar
19. Ohashi, K., Hata, N., Matsumura, T., Ogata, T., Yahagi, N., Sakuma, I. and Dohi, T., “Stem cell harvesting device with passive flexible drilling unit for bone marrow transplantation,” IEEE Trans. Robot. Autom. 19 (5), pp. 810817 (2003).Google Scholar
20. Ikuta, K., Yamamoto, K. and Sasaki, K., “Development of Remote Microsurgery Robot and New Surgical Procedure for Deep and Narrow Space,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Taipei, Taiwan (Sep. 14–19, 2003) pp. 11031108.Google Scholar
21. Simaan, N., Taylor, R. and Flint, P., “A Dexterous System for Laryngeal Surgery,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, New Orleans, LA, USA (Apr. 26–May 1, 2004) pp. 351357.Google Scholar
22. Chirikjian, G. S. and Burdick, J. W., “The kinematics of hyper-redundant robot locomotion,” IEEE Trans. Robot. Autom. 11 (6) 781793 (1995).CrossRefGoogle Scholar
23. Funda, J., Gruben, K., Eldridge, B., Gomory, S. and Taylor, R., “Control and Evaluation of a 7-axis Surgical Robot for Laparoscopy,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Nagoya, Japan (May 21–27, 1995), pp. 14771484.Google Scholar
24. Oberg, E., Jones, F. D., Horton, H. L. and Ryffel, H. H., Machinery's Handbook, 27th ed. (Industrial Press, Inc., New York, 2004) pp. 665677.Google Scholar
25. Armand, M., Kutzer, M. D. M., Brown, C. Y., Taylor, R. H. and Basafa, E., “Cable driven morphable manipulator and manufacturing method thereof,” U.S. Patent Pending (2011).Google Scholar
26. Segreti, S. M., Kutzer, M. D. M., Murphy, R. J. and Armand, M., “Cable Length Estimation for a Compliant Surgical Manipulator,” Proceedings of the IEEE International Robotics and Automation (ICRA) Conference, Saint Paul, MN, USA (May 14–18, 2012) pp. 701708.Google Scholar
27. Zhang, J., Roland, J. T., Manolidis, S. and Simaan, N., “Optimal path planning for robotic insertion of steerable electrode arrays in cochlear implant surgery,” J. Med. Devices 3 (1), (2009). [Online]. Available: http://cat.inist.fr/?aModele=afficheN&cpsidt=21428530 CrossRefGoogle Scholar
28. Fletcher, R. and Powell, M., “A rapidly convergent descent method for minimization,” Comput. J. 6, 163168 (1963).Google Scholar
29. Goldfarb, D., “A family of variable metric updates derived by variational means,” Math. Comput. 24, 2326 (1970).CrossRefGoogle Scholar
30. Sethian, J., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, 1999).Google Scholar
31. Caselles, V., Kimmel, R. and Sapiro, G., “Geodesic active contours,” Int. J. Comput. Vis. 22, 6179 (1997), 10.1023/A:1007979827043. [Online]. Available: http://dx.doi.org/10.1023/A:1007979827043 Google Scholar
32. Lander, J., “Skin them bones: Game programming for the web generation,” Game Developer Mag. 5, 1116 (1998).Google Scholar