Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:14:05.916Z Has data issue: false hasContentIssue false

Design and control of a cable-driven rehabilitation robot for upper and lower limbs

Published online by Cambridge University Press:  19 April 2021

Efe Levent Oyman
Affiliation:
Yildiz Technical University, Department of Mechatronics Engineering, Istanbul, Turkey
Muhammed Yusuf Korkut
Affiliation:
Istanbul Technical University, Graduate School of Science Engineering and Technology, Istanbul, Turkey
Cüneyt Yilmaz
Affiliation:
Yildiz Technical University, Department of Mechatronics Engineering, Istanbul, Turkey
Zeki Y. Bayraktaroglu
Affiliation:
Istanbul Technical University, Mechanical Engineering Department, Istanbul, Turkey
M. Selcuk Arslan*
Affiliation:
Yildiz Technical University, Department of Mechatronics Engineering, Istanbul, Turkey
*
*Corresponding author. Email: [email protected]

Abstract

The design and control of a cable-driven rehabilitation robot, which can be configured easily for exercising different articulations such as elbows, shoulders, hips, knees and ankles without requiring any orthosis, are introduced. The passive, active-assisted and active-resisted exercises were designed and implemented using impedance control. The controller could switch between exercises according to the force feedback. The effectiveness of the proposed controller was demonstrated by experimental studies. The robot was tested first with a dummy extremity and then with a healthy subject mimicking various types of patients during the tests. Experimental results showed that satisfactory closed-loop performances were achieved.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behrman, A. L. and Harkema, S. J., “Physical rehabilitation as an agent for recovery after spinal cord njury,” Phys. Med. Rehabil. Clin. North Am. 18(2), 183202 (2007).CrossRefGoogle Scholar
Calabrò, R. S., Cacciola, A., Bertè, F., Manuli, A., Leo, A., Bramanti, A., Naro, A., Milardi, D. and Bramanti, P., “Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?,” Neurol. Sci. 37(4), 503514 (2016).CrossRefGoogle ScholarPubMed
Cafolla, D., Matteo, R. and Carbone, G., “Design of CUBE, a Cable-Driven Device for Upper and Lower Limb Exercising,” In: New Trends in Medical and Service Robotics (Springer, Cham, 2019) pp. 255263.CrossRefGoogle Scholar
Cafolla, D., Matteo, R. and Carbone, G., “CUBE, a cable-driven device for limb rehabilitation,” J. Bionic Eng. 16(3), 492502 (2019).CrossRefGoogle Scholar
Peng, L., Hou, Z. G., Peng, L., Luo, L. and Wang, W., “Robot assisted rehabilitation of the arm after stroke: Prototype design and clinical evaluation,” Sci. China Inf. Sci. 60(7), 073201 (2017).CrossRefGoogle Scholar
Colombo, R., “Performance Measures in Robot Assisted Assessment of Sensorimotor Functions,” In: Rehabilitation Robotics (Academic Press, 2018) pp. 101115.Google Scholar
Guzmán, C. H., Blanco, A., Brizuela, J. A. and Gómez, F. A., “Robust control of a hip–joint rehabilitation robot,” Biomed. Signal Process. Control 35, 100109 (2017)CrossRefGoogle Scholar
Prange, G. B., Jannink, M. J. A., Groothuis-Oudshoorn, C. G. M., Hermens, H. J. and Ijzerman, M. J., “Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke,” J. Rehabil. Res. Dev. 43(2), 171184 (2006).CrossRefGoogle Scholar
Fazekas, G., Horvath, M., Troznai, T. and Toth, A., “Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: A preliminary study,” J. Rehabil. Med. 39(7), 580582 (2007).CrossRefGoogle ScholarPubMed
Krebs, H. I., Ferraro, M., Buerger, S. P., Newbery, M. J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B. T. and Hogan, N., “Rehabilitation robotics: Pilot trial of a spatial extension for MIT-Manus,” J. Neuroeng. Rehabil. 1(1), 520 (2004).CrossRefGoogle ScholarPubMed
Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M. and Van der Loos, M., “Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke,” Arch. Phys. Med. Rehabil. 83(7), 952959 (2002).CrossRefGoogle ScholarPubMed
Nef, T., Mihelj, M. and Riener, R., “ARMin: A robot for patient-cooperative arm therapy,” Med. Biol. Eng. Comput. 45(9), 887900 (2007).CrossRefGoogle Scholar
Nef, T., Klamroth-Marganska, V., Keller, U. and Riener, R., “Three-Dimensional Multi-Degree-of-Freedom Arm Therapy Robot (ARMin),” In: Neurorehabilitation Technology, 2nd edn. (Springer International Publishing, 2016) pp. 351374.CrossRefGoogle Scholar
Bolliger, M., Banz, R., Dietz, V. and Lünenburger, L., “Standardized voluntary force measurement in a lower extremity rehabilitation robot,” J. Neuroeng. Rehabil. 5(1), 23 (2008).CrossRefGoogle Scholar
Lünenburger, L., Colombo, G. and Riener, R., “Biofeedback for robotic gait rehabilitation,” J. Neuroeng. Rehabil. 4(1), 111 (2007).CrossRefGoogle ScholarPubMed
Veneman, J. F., Kruidhof, R., Hekman, E. E. G., Ekkelenkamp, R., Van Asseldonk, E. H. F. and Van Der Kooij, H., “Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)CrossRefGoogle Scholar
Jali, M. H., Mustafa, N. E. S., Izzuddin, T. A., Ghazali, R. and Jaafar, H. I., “ANFIS-PID controller for arm rehabilitation device,” Int. J. Eng. Technol. 7(5), 15891597 (2015).Google Scholar
Wu, J., Huang, J., Wang, Y., Xing, K. and Xu, Q., “Fuzzy PID Control of a Wearable Rehabilitation Robotic Hand Driven by Pneumatic Muscles,” 2009 IEEE International Symposium on Micro-NanoMechatronics and Human Science (2009) pp. 408413.Google Scholar
Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B. and Xie, S. S., “Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation,” Mechatronics 31, 132145 (2015).CrossRefGoogle Scholar
Kirihara, M. K., Saga, P. N. and Saito, D. N., “Design and control of an upper limb rehabilitation support device for disabled people using a pneumatic cylinder,” Ind. Rob. Int. J. 37(4), 354363 (2010).CrossRefGoogle Scholar
Ott, C., Mukherjee, R. and Nakamura, Y., “Unified İmpedance and Admittance Control,” 2010 IEEE International Conference on Robotics and Automation (2010) pp. 554561.Google Scholar
Ugurlu, B., Nishimura, M., Hyodo, K., Kawanishi, M. and Narikiyo, T., “Proof of concept for robot-aided upper limb rehabilitation using disturbance observers,” IEEE Trans. Hum. Mach. Syst. 45(1), 110118 (2015).CrossRefGoogle Scholar
Kalkan, Ö., Sinir sistemi hasarlar ile ilgili hastalklarn tedavisinde kullanlmak üzere mekanizma (Turkish Patent Institute, 2013) 2013/11368.Google Scholar
Alamdari, A. and Krovi, V., “Robotic Physical Exercise and System (ROPES): A Cable-Driven Robotic Rehabilitation System for Lower-Extremity Motor Therapy,” Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering (2015) p. V05AT08A032.Google Scholar
Jin, X., Cui, X. and Agrawal, S. K., “Design of a Cable-Driven Active Leg Exoskeleton (C-ALEX) and Gait Training Experiments with Human Subjects,” Proceedings of the International Conference on Robotics and Automation (2015) pp. 5578–5583.Google Scholar
Wang, Y., Wang, K., Wang, W., Han, Z. and Zhang, Z., “Appraisement and analysis of dynamical stability of under-constrained cable-driven lower-limb rehabilitation training robot,” Robotica, 1–14 (2020).CrossRefGoogle Scholar
Hamida, I. B., Laribi, M. A., Mlika, A., Romdhane, L., Zeghloul, S. and Carbone, G., “Multi-objective optimal design of a cable driven parallel robot for rehabilitation tasks,” Mech. Mach. Theory 156,104141, 124 (2021).Google Scholar
Gonçalves, R. S., Alves, T., Carbone, G. and Ceccarelli, M., “Cable-Driven Robots in Physical Rehabilitation: From Theory to Practice,” In: Advanced Robotics and Intelligent Automation in Manufacturing (2020) pp. 5296.CrossRefGoogle Scholar
Li, X., Yang, Q. and Song, R., “Performance-based hybrid control of a cable-driven upper-limb rehabilitation robot,” IEEE Trans. Biomed. Eng. 68(4), 13511359 (2021).CrossRefGoogle ScholarPubMed
Pop, N., Ulinici, I., Pisla, D. and Carbone, G., “Motion Generation for a Cable Based Rehabilitation Robot,” European Conference on Mechanism Science (2020) pp. 432–439.Google Scholar
Wang, Y., Wang, K. and Zhang, Z., “Design, comprehensive evaluation, and experimental study of a cable-driven parallel robot for lower limb rehabilitation,” J. Braz. Soc. Mech. Sci. Eng. 42(7), 120 (2020).CrossRefGoogle Scholar
Wang, Y., Wang, K., Zhang, Z. and Mo, Z., “Control strategy and experimental research of a cable-driven lower limb rehabilitation robot,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2020). https://doi.org/10.1177/0954406220952510.CrossRefGoogle Scholar
Hwang, S. W., Bak, J., Yoon, J. and Park, J. H., “Oscillation reduction and frequency analysis of under-constrained cable-driven parallel robot with three cables,” Robotica 38(3), 375395 (2020).CrossRefGoogle Scholar
Xiong, H. and Diao, X., “A review of cable-driven rehabilitation devices,” Disability Rehabil. Assistive Technol. 15(8), 885897 (2020).CrossRefGoogle ScholarPubMed
Sanjuan, J. D., Castillo, A. D., Padilla, M. A., Quintero, M. C., Gutierrez, E. E., Sampayo, I. P., Hernandez, J. R. and Rahman, M. H., “Cable driven exoskeleton for upper-limb rehabilitation: A design review,” Rob. Auto. Syst. 126, 103445 (2020).CrossRefGoogle Scholar
Jin, X., Jun, D. I., Jin, X., Seon, J., Pott, A., Park, S., Park, J. O. and Ko, S. Y., “Upper Limb Rehabilitation Using a Planar Cable-Driven Parallel Robot with Various Rehabilitation Strategies,” In: Cable-Driven Parallel Robots (Springer, Cham, 2015) pp. 307–321.CrossRefGoogle Scholar
Zanotto, D., Rosati, G., Minto, S. and Rossi, A.. “Sophia-3: A semiadaptive cable-driven rehabilitation device with a tilting working plane,” IEEE Trans. Rob. 30(4), 974979 (2014).CrossRefGoogle Scholar
Niu, J., Yang, Q., Wang, X. and Song, R., “Sliding mode tracking control of a wire-driven upper-limb rehabilitation robot with nonlinear disturbance observer,” Front. Neurol. 8, 646 (2017).CrossRefGoogle ScholarPubMed
Rosati, G., Gallina, P. and Masiero, S., “Design, implementation and clinical tests of a wire-based robot for neurorehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 560569 (2007).CrossRefGoogle ScholarPubMed
Rosati, G., Gallina, P., Masiero, S. and Rossi, A., “Design of a New 5 DOF Wire-Based Robot for Rehabilitation,” 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, Chicago, IL, USA (2005) pp. 430433.Google Scholar
Gonçalves, R. S., Carvalho, J. C. M., Ribeiro, J. F. and Salim, V. V., “Cable-Driven Robot for Upper and Lower Limbs Rehabilitation,” In: Handbook of Research on Advancements in Robotics and Mechatronics (IGI Global, 2015) pp. 284315.CrossRefGoogle Scholar
Barbosa, A. M., Carvalho, J. C. M. and Goncalves, R. S., “Cable-driven lower limb rehabilitation robot,” J. Braz. Soc. Mech. Sci. Eng. 40(5), 111 (2018).CrossRefGoogle Scholar
Nunes, W. M., Rodrigues, L. A. O., Oliveira, L. P., Ribeiro, J. F., Carvalho, J. C. M. and Gonçalves, R. S., “Cable-Based Parallel Manipulator for Rehabilitation of Shoulder and Elbow Movements,” 2011 IEEE İnternational Conference on Rehabilitation Robotics, Zurich, Switzerland (2011) pp. 1–6.Google Scholar
Homma, K., Fukuda, O., Nagata, Y. and Usuba, M., “Study of a Wire-Driven Leg Rehabilitation System,” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan (2004) pp. 16681673.Google Scholar
Adler, S. S., Beckers, D. and Buck, M., PNF in Practice: An Illustrated Guide (Springer, Heidelberg, Germany, 2008).Google Scholar
McGee, S., Evidence Based Physical Diagnosis e-book (Elsevier, Philadelphia, PA, 2016).Google Scholar
Yu, H., Huang, S., Chen, G., Pan, Y. and Guo, Z., “Human-robot nteraction control of rehabilitation robots with series elastic actuators,” IEEE Trans. Robot. 31(5), 10891100 (2015).CrossRefGoogle Scholar
Chaparro-Rico, B. D. M., Cafolla, D., Ceccarelli, M. and Castillo-Castaneda, E., “Experimental characterization of NURSE, a device for arm motion guidance,” J. Healthcare Eng. 2018, 1–15, Hindawi (2018).CrossRefGoogle Scholar
Chaparro-Rico, B. D. M., Cafolla, D., Ceccarelli, M. and Castillo-Castaneda, E., “NURSE-2 DoF Device for arm motion guidance: Kinematic, dynamic, and FEM analysis,” Appl. Sci. 10(6), 2139 (2020).CrossRefGoogle Scholar
Chaparro-Rico, B. D. M., Cafolla, D., Castillo-Castaneda, E. and Ceccarelli, M., “Design of arm exercises for rehabilitation assistance,” J. Eng. Res. 8(3), 204218 (2020).CrossRefGoogle Scholar
Akdoğan, E., Aktan, M. E., Koru, A. T., Arslan, M. S., Atlhan, M. and Kuran, B., “Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: Performance analysis and clinical results,” Mechatronics 49, 7791 (2018).CrossRefGoogle Scholar
Akdoğan, E. and Adli, M. A., “The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot,” Mechatronics 21(3), 509522 (2011).CrossRefGoogle Scholar
Xu, G., Song, A., Pan, L., Gao, X., Liang, Z., Li, J. and Xu, B., “Clinical experimental research on adaptive robot-aided therapy control methods for upper-limb rehabilitation,” Robotica 32(7), 10811100 (2014).CrossRefGoogle Scholar
Rahman, M. H., Rahman, M. J., Cristobal, O. L., Saad, M., Kenné, J. P. and Archambault,”, P. S.Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements,” Robotica 33(1), 1939 (2015).CrossRefGoogle Scholar
Tsumugiwa, T., Fuchikami, Y., Kamiyoshi, A., Yokogawa, R. and Yoshida, K., “Stability analysis for impedance control of robot for human-robot cooperative task system,” J. Adv. Mech. Des. Syst. Manuf. 71(7), 113121 (2005).Google Scholar
Masia, L., Krebs, H. I., Cappa, P. and Hogan, N., “Design, Characterization, and İmpedance Limits of a Hand Robot,” IEEE 10th International Conference on Rehabilitation Robotics (2007) pp. 1085–1089.Google Scholar
Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D. and Hogan, N., “Robot-aided neurorehabilitation: A robot for wrist rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 327335 (2007).CrossRefGoogle ScholarPubMed
Oyman, E. L. and Arslan, M. S., “Impedance-Based Control of a Cable Driven Rehabilitation Robot,” 2018 6th International Conference on Control Engineering & Information Technology (CEIT) (IEEE, 2018) pp. 1–6.Google Scholar