Published online by Cambridge University Press: 04 September 2015
In this article, a two-dimensional analysis of biped robot sliding dynamics is performed. First, the dynamics of a biped robot based on feet-slip are derived using the coulomb friction model. The state transition can be formulated in the centroid acceleration space whose diagram is defined as a “triangle of sliding friction” (TSF). The TSF's characteristics are explained by focusing on comparison with the cone of friction which has a similar state decision diagram. Next, for the behavioral simulation of a concrete model, a 2-DOF biped robot is used to analyze the sliding features in terms of the asymmetry of the dynamics of each leg. Finally, the sliding characteristics are applied to the two tasks of running and somersaulting. The results show the robot takes short rapid repetitive steps for running based on frictional asymmetry and theoretically based on torque asymmetry can make one revolution using the large angular momentum acquired during sliding motion.