Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:45:50.991Z Has data issue: false hasContentIssue false

Task dependent synthesis of some geometrical parameters of a robot mechanism

Published online by Cambridge University Press:  09 March 2009

Maks Oblak
Affiliation:
Faculty of Technical Sciences, Mechanical Engineering Department, University of Maribor, Smetanova 17, P.O. Box 224, 62000 Maribor (Slovenia)
Karl Gotlih
Affiliation:
Faculty of Technical Sciences, Mechanical Engineering Department, University of Maribor, Smetanova 17, P.O. Box 224, 62000 Maribor (Slovenia)

Summary

This paper deals with the synthesis of a robot mechanism, which has an open kinematic chain structure. The aim of the synthesis is to find optimal mechanism link lengths and the elevation of the robot mechanism base, with respect to the arbitrary chosen task which is described in a task space.

A mathematical model, which describes the problem and enables one to use a nonlinear optimization algorithm, was developed. The usefulness of the approach is demonstrated by the example of the Manutec r3 mechanism with a prescribed task for the robot's end-effector.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lenarčič, J., Sinteza kinematike manipulacijskih robotov [The synthesis of kinematics of manipulation robots] Ph. D. Thesis, Univerza v Ljubljana, Fakulteta za elektrotehniko, Slovenia, (1985). [in Slovene].Google Scholar
2.Dittrich, G. and Meyer, G., Optimierung der kinematischen Abmesungen von Handhabungsgeräten Robotersysteme, Springer-Verlag, Berlin 3, 205208 (1987).Google Scholar
3.Haug, E.J., Wehage, R.A. and Barman, N.C., Design Sensitivity Analysis of Planar Mechanism and Machine Dynamics, J. Mechanical Design, Trans, of the ASME 103, 560570 (1981).CrossRefGoogle Scholar
4.Wehage, R.A. and Haug, E.J., Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems J. Mechanical Design, Trans, of the ASME 104, 247255 (1982).CrossRefGoogle Scholar
5.Goldenberg, A.A., Benhabib, B. and Fenton, R.G., A Complete Generalized Solution of the Inverse Kinematics of the Robots, IEEE, J. Robotics and Automation Ra-1, No. 1, 1420 (1985).CrossRefGoogle Scholar
6.Haug, E.J. and Arora, J.S., Applied Optimal Design (John Wiley and Sons, New York, 1979).Google Scholar
7.Türk, S. and Otter, M., Das DFVLR Modell Nr. 1 des Industrieroboters Manutec r3 Robotersysteme, Band 3, Heft 2, Springer-Verlag 101106 (1987).Google Scholar
8.Desoyer, K., Kopacek, P. and Troch, I., Industrieroboter und Handhabungsgeräte Verlag, R. Oldenbourg, München, Wien (1985).Google Scholar
9.NAG, The NAG Fortran Library Introductory GuideMark 13The numerical algorithmus group limited (1988).Google Scholar