Hostname: page-component-f554764f5-fnl2l Total loading time: 0 Render date: 2025-04-20T07:45:41.291Z Has data issue: false hasContentIssue false

A review on soft in-pipe navigation robot from the perspective of material, structure, locomotion strategy, and actuation technique

Published online by Cambridge University Press:  26 November 2024

Glady Amen Anak Victor Luna
Affiliation:
School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, Seberang Perai Selatan, Nibong Tebal, Malaysia
Mohd Shahrimie Mohd Asaari
Affiliation:
School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, Seberang Perai Selatan, Nibong Tebal, Malaysia
Mohamad Tarmizi Abu Seman
Affiliation:
School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, Seberang Perai Selatan, Nibong Tebal, Malaysia
Abdul Sattar Din*
Affiliation:
School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, Seberang Perai Selatan, Nibong Tebal, Malaysia
*
Corresponding author: Abdul Sattar Din; E-mail: [email protected]

Abstract

Pipelines are used in many sectors to transport materials such as fluid from one place to another. These pipelines require regular inspection and maintenance to ensure proper operations and to avoid accidents. Many in-pipe navigation robots have been developed to perform the inspection. Soft in-pipe navigation robot is a special class of in-pipe robot, where the structure is made entirely of soft materials. The soft in-pipe robots are cheaper, lightweight, robust, and more adaptable to the environment inside pipelines as compared to the traditional rigid in-pipe navigation robot. This paper reviews the design of different types of soft in-pipe navigation in terms of the material, structure, locomotion strategy, and actuation techniques. These four different aspects of the design help researchers to narrow down their research and explore different opportunities within each of the design aspects. This paper also offers suggestions on the direction of research to improve the current soft in-pipe navigation robot design.

Type
Review Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Iida, F. and Laschi, C., “Soft robotics: Challenges and perspectives,” Proc Comp Sci 7, 99102 (2011).CrossRefGoogle Scholar
Trivedi, D., Rahn, C. D., Kier, W. M. and Walker, I. D., “Soft robotics: Biological inspiration, state of the art, and future research,” Appl Bionics Biomech 5(3), 99117 (2008).CrossRefGoogle Scholar
Laschi, C., Mazzolai, B. and Cianchetti, M., “Soft robotics: Technologies and systems pushing the boundaries of robot abilities,” Sci Robot 1(1), eaah3690 (2016).CrossRefGoogle ScholarPubMed
Shintake, J., Cacucciolo, V., Floreano, D. and Shea, H., “Soft robotic grippers,” Adv Mater 30(29), 1707035 (2018).CrossRefGoogle Scholar
Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C. and Cianchetti, M., “A bioinspired soft robotic gripper for adaptable and effective grasping,” Soft Robot 2(3), 107116 (2015).CrossRefGoogle Scholar
Sinatra, N. R., Teeple, C. B., Vogt, D. M., Parker, K. K., Gruber, D. F. and Wood, R. J., “Ultragentle manipulation of delicate structures using a soft robotic gripper,” Sci Robot 4(33), 5425 (2019).CrossRefGoogle ScholarPubMed
Cianchetti, M., Laschi, C., Menciassi, A. and Dario, P., “Biomedical applications of soft robotics,” Nat Rev Mater 3(6), 143153 (2018).CrossRefGoogle Scholar
Hsiao, J. H., Chang, J. Y. and Cheng, C. M., “Soft medical robotics: Clinical and biomedical applications, challenges, and future directions,” Adv Robotics 33(21), 10991111 (2019).CrossRefGoogle Scholar
Tse, Z. T. H., Chen, Y., Hovet, S., Ren, H., Cleary, K., Xu, S., Wood, B. and Monfaredi, R., “Soft robotics in medical applications,” J Med Robot Res 3(03n04), 1841006 (2018).CrossRefGoogle Scholar
Chowdhary, G., Gazzola, M., Krishnan, G., Soman, C. and Lovell, S., “Soft robotics as an enabling technology for agroforestry practice and research,” Sustainability 11(23), 6751 (2019).CrossRefGoogle Scholar
Navas, E., Fernández, R., Sepúlveda, D., Armada, M. and Gonzalez-de-Santos, P., “Soft grippers for automatic crop harvesting: A review,” Sensors 21(8), 2689 (2021).CrossRefGoogle ScholarPubMed
Armanini, C., Junge, K., Johnson, P., Whitfield, C., Renda, F., Calisti, M. and Hughes, J., “Soft robotics for farm to fork: Applications in agriculture & farming,” Bioinspir Biomim 19(2), 021002 (2024).CrossRefGoogle ScholarPubMed
Liu, X., Song, M., Fang, Y., Zhao, Y. and Cao, C., “Worm-inspired soft robots enable adaptable pipeline and tunnel inspection,” Adv Intell Syst 4(1), 2100128 (2022).CrossRefGoogle Scholar
Tang, C., Du, B., Jiang, S., Shao, Q., Dong, X., Liu, X. J. and Zhao, H., “A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale,” Sci Robot 7(66), 8597 (2022).CrossRefGoogle ScholarPubMed
Beuker, T., Brockhaus, S., Ahlbrink, R. and McGee, M., “Addressing Challenging Environments-Advanced In-Line Inspection Solutions for Gas Pipelines,” In: Proceedings of the 24th World Gas Conference, (2009) pp. 59.Google Scholar
Hu, T. and Guo, J., “Development and application of new technologies and equipment for in-line pipeline inspection,” Nat Gas Ind B 6(4), 404411 (2019).CrossRefGoogle Scholar
Gargade, A., Tambuskar, D. and Thokal, G., “Modelling and analysis of pipe inspection robot,” Int J Emerg Technol Adv Eng 3(5), 120126 (2013).Google Scholar
Tavakoli, M., Marques, L. and de Almeida, A. T., “Development of an industrial pipeline inspection robot,” Ind Robot: An Int J 37(3), 309322 (2010).CrossRefGoogle Scholar
Venkateswaran, S., Chablat, D. and Hamon, P., “An optimal design of a flexible piping inspection robot,” J Mech Robot 13(3), 035002 (2021).CrossRefGoogle Scholar
Chablat, D., Venkateswaran, S. and Boyer, F., “Mechanical design optimization of a piping inspection robot,” Procedia CIRP 70, 307312 (2018).CrossRefGoogle Scholar
Joyee, E. B., Szmelter, A., Eddington, D. and Pan, Y., “3D printed biomimetic soft robot with multimodal locomotion and multifunctionality,” Soft Robot 9(1), 113 (2022).CrossRefGoogle ScholarPubMed
Zhang, X., Pan, T., Heung, H. L., Chiu, P. W. Y. and Li, Z., “A Biomimetic Soft Robot for Inspecting Pipeline with Significant Diameter Variation,” In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2018) pp. 74867491.Google Scholar
Jiang, C. and Pei, Z., “An in-pipe worm robot with pneumatic actuators based on origami paper-fabric composites,” Text Res J 91(23-24), 27242737 (2021).CrossRefGoogle Scholar
Yamamoto, T., Konyo, M. and Tadokoro, S., “A High-Speed Locomotion Mechanism using Pneumatic Hollow-Shaft Actuators for in-Pipe Robots,” In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2015) pp. 47244730.Google Scholar
Ravishankar, P. S., “Treatise on EPDM,” Rubber Chem Technol 85(3), 327349 (2012).CrossRefGoogle Scholar
Verma, M. S., Ainla, A., Yang, D., Harburg, D. and Whitesides, G. M., “A soft tube-climbing robot,” Soft Robot 5(2), 133137 (2018).CrossRefGoogle ScholarPubMed
Digumarti, K. M., Conn, A. T. and Rossiter, J., “EuMoBot: Replicating euglenoid movement in a soft robot,” J R Soc Interface 15(148), 20180301 (2018).CrossRefGoogle Scholar
Takayama, T., Takeshima, H., Hori, T. and Omata, T., “A twisted bundled tube locomotive device proposed for in-pipe mobile robot,” IEEE/ASME Trans Mechatron 20(6), 29152923 (2015).CrossRefGoogle Scholar
Ge, J. Z., Calderón, A. A., Chang, L. and Pérez-Arancibia, N. O., “An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion,” Bioinspir Biomim 14(3), 036004 (2019).CrossRefGoogle ScholarPubMed
Zhang, Z., Wang, X., Wang, S., Meng, D. and Liang, B., “Design and modeling of a parallel-pipe-crawling pneumatic soft robot,” IEEE Access 7, 134301134317 (2019).CrossRefGoogle Scholar
Yamamoto, T., Sakama, S. and Kamimura, A., “Pneumatic duplex-chambered inchworm mechanism for narrow pipes driven by only two air supply lines,” IEEE Robot Autom Lett 5(4), 50345042 (2020).CrossRefGoogle Scholar
Calderón, A. A., Ugalde, J. C., Zagal, J. C. and Pérez-Arancibia, N. O., “Design, Fabrication and Control of a Multi-Material-Multi-Actuator Soft Robot Inspired by Burrowing Worms,” In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), (2016) pp. 3138.Google Scholar
Calderón, A. A., Ugalde, J. C., Chang, L., Zagal, J. C. and Pérez-Arancibia, N. O., “An earthworm-inspired soft robot with perceptive artificial skin,” Bioinspir Biomim 14(5), 056012 (2019).CrossRefGoogle ScholarPubMed
Niu, H., Feng, R., Xie, Y., Jiang, B., Sheng, Y., Yu, Y., Baoyin, H. and Zeng, X., “Magworm: A biomimetic magnet embedded worm-like soft robot,” Soft Robot 8(5), 507518 (2021).CrossRefGoogle ScholarPubMed
Liu, M., Xu, Z., Ong, J. J., Zhu, J. and Lu, W. F., “An Earthworm-like Soft Robot with Integration of Single Pneumatic Actuator and Cellular Structures for Peristaltic motion,” In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2020) pp. 78407845.Google Scholar
Yeh, C.-Y., Chen, C.-Y. and Juang, J.-Y., “Soft hopping and crawling robot for in-pipe traveling,” Extreme Mech Lett 39, 100854 (2020).CrossRefGoogle Scholar
Yeh, C.-Y., Chou, S.-C., Huang, H.-W., Yu, H.-C. and Juang, J.-Y., “Tube-crawling soft robots driven by multistable buckling mechanics,” Extreme Mech Lett 26, 6168 (2019).CrossRefGoogle Scholar
Hu, F. and Li, T., “An origami flexiball-inspired metamaterial actuator and its in-pipe robot prototype,” Actuators 10(4), 67 (2021).CrossRefGoogle Scholar
Mark, A. G., Palagi, S., Qiu, T. and Fischer, P., “Auxetic Metamaterial Simplifies Soft Robot Design,” In: 2016 IEEE International Conference on Robotics and Automation (ICRA), (2016) pp. 49514956.Google Scholar
Kamata, M., Yamazaki, S., Tanise, Y., Yamada, Y. and Nakamura, T., “Morphological change in peristaltic crawling motion of a narrow pipe inspection robot inspired by earthworm’s locomotion,” Adv Robotics 32(7), 386397 (2018).CrossRefGoogle Scholar
Miyasaka, K., Kawano, G. and Tsukagoshi, H., “Long-Mover: Flexible Tube in-Pipe Inspection Robot for Long Distance and Complex Piping,” In: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), (2018) pp. 10751080.Google Scholar
Seok, S., Onal, C. D., Cho, K.-J., Wood, R. J., Rus, D. and Kim, S., “Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators,” IEEE/ASME Trans Mechatron 18(5), 14851497 (2012).CrossRefGoogle Scholar
Adams, W., Sridar, S., Thalman, C. M., Copenhaver, B., Elsaad, H. and Polygerinos, P., “Water Pipe Robot Utilizing Soft Inflatable Actuators,” In: 2018 IEEE International Conference on Soft Robotics (robosoft), (2018) pp. 321326.Google Scholar
Zhang, B., Fan, Y., Yang, P., Cao, T. and Liao, H., “Worm-like soft robot for complicated tubular environments,” Soft Robot 6(3), 399413 (2019).CrossRefGoogle ScholarPubMed
Hu, Z. J. and Cheneler, D., “Bio-inspired soft robot for locomotion and navigation in restricted spaces,” J Robot Autom 5(1), 236250 (2021).Google Scholar
Gilbertson, M. D., McDonald, G., Korinek, G., Van de Ven, J. D. and Kowalewski, T. M., “Serially Actuated Locomotion for Soft Robots in Tube-like Environments,” IEEE Robot Autom Lett 2(2), 11401147 (2017).CrossRefGoogle Scholar
Das, R., Babu, S. P. M., Palagi, S. and Mazzolai, B., “Soft Robotic Locomotion by Peristaltic Waves in Granular Media,” In: 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), (2020) pp. 223228.Google Scholar
Tang, Z., Lu, J., Wang, Z., Ma, G., Chen, W. and Feng, H., “Development of a new multi-cavity pneumatic-driven earthworm-like soft robot,” Robotica 38(12), 22902304 (2020).CrossRefGoogle Scholar
Takeshima, H. and Takayama, T., “Development of a steerable in-pipe locomotive device with six braided tubes,” ROBOMECH J 5(1), 111 (2018).CrossRefGoogle Scholar
Takeshima, H. and Takayama, T., “Six-Braided Tube in-Pipe Locomotive Device,” In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2015) pp. 11251130.Google Scholar
Quillin, K. J., “Kinematic scaling of locomotion by hydrostatic animals: Ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris,” J Exp Biol 202(6), 661674 (1999).CrossRefGoogle ScholarPubMed
Edwards, C. A. and Arancon, N. Q., “Earthworm Morphology,” In: Biology and Ecology of Earthworms, (Springer, New York, US, 2022) pp. 131.CrossRefGoogle Scholar
Liu, Z., Wang, Y., Yuan, S. and Fei, Y., “Design and experiment of a pneumatic self-repairing soft actuator,” Robotica 41(6), 18121827 (2023).CrossRefGoogle Scholar
Dong, X., Niu, C. and Qi, M.. “Electrorheological Elastomers,” In: Elastomers, (Intech Open, London, UK, 2017).CrossRefGoogle Scholar
Bastola, A. K., Paudel, M., Li, L. and Li, W., “Recent progress of magnetorheological elastomers: A review,” Smart Mater Struct 29(12), 123002 (2020).CrossRefGoogle Scholar
Hu, J., Liang, L. and Zeng, B., “Design, modeling, and testing of a soft actuator with variable stiffness using granular jamming,” Robotica 40(7), 24682484 (2022).CrossRefGoogle Scholar
O’Halloran, A., O’malley, F. and McHugh, P., “A review on dielectric elastomer actuators, technology, applications, and challenges,” J Appl Phys 104(7), 071101 (2008).CrossRefGoogle Scholar
Farmer, C. and Medina, H., “Effects of electrostriction on the bifurcated electro-mechanical performance of conical dielectric elastomer actuators and sensors,” Robotica 41(1), 215235 (2023).CrossRefGoogle Scholar
Jo, C., Pugal, D., Oh, I. K., Kim, K. J. and Asaka, K., “Recent advances in ionic polymer-metal composite actuators and their modeling and applications,” Prog Polym Sci 38(7), 10371066 (2013).CrossRefGoogle Scholar
Zhao, Q., Qi, H. J. and Xie, T., “Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,” Prog Polym Sci 49-50, 79120 (2015).CrossRefGoogle Scholar