Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:14:55.088Z Has data issue: false hasContentIssue false

Dynamic Analysis of the UVMS: Effect of Disturbances, Coupling, and Joint-Flexibility on End-Effector Positioning

Published online by Cambridge University Press:  09 February 2021

Umer Hameed Shah*
Affiliation:
Mechanical Engineering Department, Texas A&M University at Qatar, Doha, Qatar E-mails: [email protected], [email protected] Mechanical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, UAE
Mansour Karkoub
Affiliation:
Mechanical Engineering Department, Texas A&M University at Qatar, Doha, Qatar E-mails: [email protected], [email protected]
Deniz Kerimoglu
Affiliation:
Mechanical Engineering Department, Texas A&M University at Qatar, Doha, Qatar E-mails: [email protected], [email protected]
Hong-Du Wang
Affiliation:
Mechanical Engineering Department, Texas A&M University at Qatar, Doha, Qatar E-mails: [email protected], [email protected] College of Engineering, Ocean University of China, Qingdao, China E-mail: [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

This paper investigates the dynamics of an underwater vehicle-manipulator system (UVMS) consisting of a two-link flexible-joint manipulator affixed to an autonomous underwater vehicle. The quasi-Lagrange formulation is utilized in deriving a realistic mathematical model of the UVMS considering joints’ friction, hysteretic coupling between the joints and links, and the nonlinear hydrodynamic forces acting on the system, such as added mass, viscous damping, buoyancy, drag, and vortex-induced forces. Numerical simulations are performed to demonstrate the effects of hydrodynamic forces and system coupling between the vehicle and the manipulator and the joints and the links on the precise positioning of the end effector.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kim, T. W., Marani, G. and Yuh, J., “Underwater vehicle manipulators,” In: Springer Handbook of Ocean Engineering. Springer Handbooks (Dhanak, M. R. and Xiros, N. I., eds) (Springer, Cham, 2016). doi: 10.1007/978-3-319-16649-0_17.Google Scholar
Haugalokken, B. O. A., Jorgensen, E. K. and Schjolberg, I., “Experimental validation of end-effector stabilization for underwater vehicle-manipulator systems in subsea operations,” Robot. Autom. Syst. 109, 112 (2018). doi: 10.1016/j.robot.2018.08.007.CrossRefGoogle Scholar
Shim, H., Jun, B. H., Lee, P. M., Baek, H. and Lee, J., “Workspace control system of underwater teleoperated manipulators on an ROV,” Ocean Eng. 37(11–12), 10361047 (2010). doi: 10.1016/j.oceaneng.2010.03.017.CrossRefGoogle Scholar
Wang, Y., Wang, S., Wei, Q., Tan, M., Zhou, C. and Yu, J., “Development of an underwater manipulator and its free-floating autonomous operation,” IEEE-ASME Trans. Mechatron. 21(2), 815824 (2016). https://ieeexplore.ieee.org/document/7303960.CrossRefGoogle Scholar
Karkoub, M., Wu, H. M. and Hwang, C. L., “Nonlinear trajectory-tracking control of an autonomous underwater vehicle,” Ocean Eng. 145, 188198 (2017). doi: 10.1016/j.oceaneng.2017.08.025.CrossRefGoogle Scholar
Fossen, T. I., Guidance and Control of Ocean Vehicles (John Wiley & Sons, New York, NY, USA, 1994). ISBN: 978-0471941132.Google Scholar
Schjølberg, I. and Fossen, T. I., “Modelling and Control of Underwater Vehicle-Manipulator System,Proceedings of Marine Craft Maneuvering and Control (1994) pp. 4557.Google Scholar
Dunnigan, M. W. and Russell, G. T., “Evaluation and reduction of the dynamic coupling between a manipulator and an underwater vehicle,” IEEE J. Ocean. Eng. 23(3), 260273 (1998). https://ieeexplore.ieee.org/document/701201.CrossRefGoogle Scholar
Santhakumar, M., “Investigation into the dynamics and control of an underwater vehicle-manipulator system,Modelling Simul. Eng., 113 (2013). doi: 10.1155/2013/839046.CrossRefGoogle Scholar
Barbalata, C., Dunnigan, M. W. and Petillot, Y., “Coupled and decoupled force/motion controllers for an underwater vehicle-manipulator system,” J. Mar. Sci. Eng. 6, (2018). doi: 10.3390/jmse6030096.CrossRefGoogle Scholar
Sarkar, N. and Podder, T. K., “Coordinated motion planning and control of autonomous underwater vehicle-manipulator systems subject to drag optimization,” IEEE J. Ocean. Eng. 26(2), 228239 (2001). https://ieeexplore.ieee.org/document/922789.CrossRefGoogle Scholar
Tarn, T. J., Shoults, G. A. and Yang, S. P., “A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method,” Auton. Robot. 3(2–3), 269283 (1996). doi: 10.1007/BF00141159.CrossRefGoogle Scholar
Levesque, B. and Richard, M. J., “Dynamic analysis of a manipulator in a fluid environment,” Int. J. Robot. Res. 13(3), 221231 (1994). doi: 10.1177/027836499401300304.CrossRefGoogle Scholar
McMillan, S., Orin, D. E. and McGhee, R. B., “Efficient dynamic simulation of an underwater vehicle with a robotic manipulator,” IEEE Trans. Syst. Man Cybern. 25(8), 11941206 (1995). doi: 10.1109/21.398681.CrossRefGoogle Scholar
Hong, K. -S. and Shah, U. H., “Vortex-induced vibrations and control of marine risers: A review,” Ocean Eng. 152, 300315 (2018). doi: 10.1016/j.oceaneng.2018.01.086.CrossRefGoogle Scholar
Shah, U. H. and Hong, K.-S., “Active vibration control of a flexible rod moving in water: Application to nuclear refueling machines,” Automatica 93, 231243 (2018). doi: 10.1016/j.automatica.2018.03.048.CrossRefGoogle Scholar
Williamson, C. H. K. and Govardhan, R., “Vortex-induced vibrations,” Annu. Rev. Fluid Mech. 36(1), 413455 (2004). doi: 10.1146/annurev.fluid.36.050802.122128.CrossRefGoogle Scholar
Spong, M. W., “Modeling and control of elastic joint robots,” J. Dyn. Syst. Meas. Control-Trans. ASME 109(4), 310319 (1987). doi: 10.1115/1.3143860.CrossRefGoogle Scholar
Ruderman, M., “Modeling of elastic robot joints with nonlinear damping and hysteresis,” In: Robotic Systems – Applications, Control and Programming, Intech Open (2012). doi: 10.5772/25494.CrossRefGoogle Scholar
Ulrich, S., Sasiadek, J. Z. and Barkana, I., “Modeling and direct adaptive control of a flexible-joint manipulator,” J. Guid. Control Dyn. 35(1), 2539 (2012). doi: 10.2514/1.54083.CrossRefGoogle Scholar
Li, S. R., Shao, Z. L., Xu, P. D. and Yin, H. Q., “Robust adaptive control for coordinated constrained multiple flexible joint manipulators with hysteresis loop,” Math. Probl. Eng. (2018). doi: 10.1155/2018/2507637.Google Scholar
Khalid, A. and Mekid, S., “Intelligent spherical joints based tri-actuated spatial parallel manipulator for precision applications,” Robot. Comput.-Integr. Manuf. 54, 173184 (2018). doi: 10.1016/j.rcim.2017.11.005.CrossRefGoogle Scholar
Awad, M. I., Gan, D., Hussain, I., Az-Zu’bi, A., Stefanini, C., Khalaf, K., Zweiri, Y., Dias, J. and Seneviratne, L., “Design of a novel passive binary-controlled variable stiffness joint (BPVSJ) towards passive haptic interface application,” IEEE Access 6, 6304563057 (2018). doi: 10.1109/ACCESS.2018.2876802.CrossRefGoogle Scholar
Awad, M. I., Hussain, I., Gan, D., Az-Zu’bi, A., Stefanini, C., Khalaf, K., Zweiri, Y., Taha, T., Dias, J. and Seneviratne, L., “Passive discrete variable stiffness joint (PDVSJ-II): Modeling, design, characterization, and testing toward passive haptic interface,” J. Mech. Robot. 11(1), (2019), Article 011005. doi: 10.1115/1.4041640.CrossRefGoogle Scholar
Ruderman, M., “Compensation of nonlinear torsion in flexible joint robots: Comparison of two approaches,” IEEE Trans. Ind. Electron. 63(9), 57445751 (2016). doi: 10.1109/TIE.2016.2574299.CrossRefGoogle Scholar
Meirovitch, L., Methods of Analytical Dynamics (Mc-Graw-Hill, New York, NY, USA, 1970). ISBN: 0-486-43239-4.Google Scholar
Baruh, H., Analytical Dynamics (McGraw-Hill, New York, NY, USA, 1999). ISBN: 0-07-365977-0.Google Scholar
Ruderman, M., Bertram, T. and Iwasaki, M., “Modeling, observation, and control of hysteresis torsion in elastic robot joints,” Mechatronics 24(5), 407415 (2014). doi: 10.1016/j.mechatronics.2014.02.009.CrossRefGoogle Scholar
Lin, C.-C., Chen, R.-C and Li, T.-L., “Experimental determination of the hydrodynamic coefficients of an underwater manipulator,” J. Robot. Syst. 16(6), 329338 (1999). doi: 10.1002/(SICI)1097-4563 (199906)16:6<329:AID-ROB2>3.0.CO;2-5.3.0.CO;2-5>CrossRefGoogle Scholar
Marzouk, O., Nayfeh, A. H., Akhtar, I. and Arafat, H. N., “Modeling steady-state and transient forces on a cylinder,” J. Vib. Control 13(7), 10651091 (2007). doi: 10.1177/1077546307078737.CrossRefGoogle Scholar
He, W., Ge, S. S., How, B. V. E., Choo, Y. S. and Hong, K. -S., “Robust adaptive boundary control of a flexible marine riser with vessel dynamics,” Automatica 47(4), 722732 (2011). doi: 10.1016/j.automatica.2011.01.064.CrossRefGoogle Scholar
Shah, U. H., Karkoub, M., Wang, H. D. and Kerimoglu, D., “Effect of Manipulator’s Joints Flexibility on the Positioning Precision of the End-Effector of the UVMS,” Dynamic Systems and Control Conference ASME, vol. 59148, V001T03A008 (2019).Google Scholar
Wang, H. D., Lin, Z., Karkoub, M. and Kerimoglu, D., “Extended State Observer Based Sliding Mode Control with Prescribed Performance for Underwater Vehicle Manipulator System,” 5th International Conference on Automation, Control and Robotics Engineering (CACRE) (IEEE, 2020) pp. 368372.CrossRefGoogle Scholar
Supplementary material: PDF

Shah et al. supplementary material

Shah et al. supplementary material

Download Shah et al. supplementary material(PDF)
PDF 117.8 KB