Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T19:26:34.411Z Has data issue: false hasContentIssue false

POINT-FREE GEOMETRY, OVALS, AND HALF-PLANES

Published online by Cambridge University Press:  23 January 2017

GIANGIACOMO GERLA*
Affiliation:
The International Institute for Advanced Scientific Studies (IIASS)
RAFAŁ GRUSZCZYŃSKI*
Affiliation:
Department of Logic, Nicolaus Copernicus University in Toruń
*
*THE INTERNATIONAL INSTITUTE FOR ADVANCED SCIENTIFIC STUDIES (IIASS) SALERNO, ITALY E-mail: [email protected]URL: www.ggerla.it
DEPARTMENT OF LOGIC NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ POLAND E-mail: [email protected]URL: www.umk.pl/∼gruszka

Abstract

In this paper we develop a point-free system of geometry based on the notions of region, parthood, and ovality, the last one being a region-based counterpart of the notion of convex set. In order to show that the system we propose is sufficient to reconstruct an affine geometry we make use of a theory of a Polish mathematician Aleksander Śniatycki from [15], in which the concept of half-plane is assumed as basic.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Borgo, S., Guarino, N., & Masolo, C. (1996). A pointless theory of space based on strong connection and congruence. In Aiello, L.C., Doyle, J. and Shapiro, S.C., editors, Proceedings of Principles of Knowledge Representation and Reasoning (kr96). Boston, MA: Morgan Kaufmann, pp. 220229.Google Scholar
de Laguna, T. (1922). Point, line, and surface, as sets of solids. Journal of Philosophy, 19(17), 449461.CrossRefGoogle Scholar
Gerla, G. (1990). Pointless metric spaces. The Journal of Symbolic Logic, 55(1), 207219.Google Scholar
Gerla, G. (1995). Pointless geometries. In Buekenhout, F., editor. Handbook of Incidence Geometry. Amsterdam: Elsevier Science B.V., pp. 10151331.Google Scholar
Gruszczyński, R. & Pietruszczak, A. (2008). Full development of Tarski’s geometry of solids. The Bulletin of Symbolic Logic, 14(4), 481540.CrossRefGoogle Scholar
Haemerli, M. & Varzi, A. (2014). Adding convexity to mereotopology. In Garbacz, P. and Kutz, O., editors, Formal Ontology in Information Systems. Proceedings of the Eighth International Conference. Amsterdam: IOS Press, pp. 6578.Google Scholar
Hellman, G. & Shapiro, S. (2015). Regions-based two dimensional continua: The Euclidean case. Logic and Logical Philosophy, 24(3), 499534.Google Scholar
Huntington, E. V. (1913). A set of postulates for abstract geometry, expressed in terms of the simple relation of inclusion. Mathematische Annalen, 73, 522559.Google Scholar
Jaśkowski, S. (1948). Une modification des définitions fondamentales de la géométrie de corps de M.A. Tarski. Annales de la Société Polonaise de Mathématique, XXI, 298–301.Google Scholar
Maruyama, Y. (2010). Fundamental results for pointfree convex geometry. Annals of Pure and Applied Logic, 161(12), 14861501.Google Scholar
Nenov, Y. & Pratt-Hartmann, I. (2010). On the computability of region-based Euclidean logics. In Dawar, A. and Veith, H., editors. Computer Science Logic. Lecture Notes in Computer Science, Vol. 6247. Berlin, Heidelberg: Springer, pp. 439453.Google Scholar
Pratt, I. (1999). First-order qualitative spatial representation languages with convexity. Spatial Cognition and Computation, 1(2), 181204.Google Scholar
Pratt, I. & Schoop, D. (1998). A complete axiom system for polygonal mereotopology of the real plane. Journal of Philosophical Logic, 27(6), 621658.Google Scholar
Pratt, I. & Schoop, D. (2000). Expressivity in polygonal, plane mereotopology. The Journal of Symbolic Logic, 65(2), 822838.Google Scholar
Śniatycki, A. (1968). An Axiomatics of Non-Desarguean Geometry Based on the Half-Plane as the Primitive Notion. Dissertationes Mathematicae, no. LIX. Warszawa: PWN.Google Scholar
Tarski, A. (1929). Les fondements de la géometrié de corps. Księga Pamiątkowa Pierwszego Polskiego Zjazdu Matematycznego, supplement to Annales de la Societé Polonaise de Mathématique. Kraków, pp. 2933.Google Scholar
Trybus, A. (2010). An axiom system for a spatial logic with convexity. Proceedings of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial Intelligence. Amsterdam, The Netherlands: IOS Press, pp. 701706.Google Scholar
van de Vel, M. L. J. (1993). Theory of Convex Structures. Amsterdam: North-Holland.Google Scholar
Varzi, A. (1994). On the boundary between mereology and topology. In Casati, R., Smith, B., and White, G., editors. Philosophy and the Cognitive Science. Proceedings of the 16th International Wittgenstein Symposium. Vienna: Hölder-Pichler-Tempsky, pp. 423442.Google Scholar
Whitehead, A. N. (1919). An Inquiry Concerning the Principles of Natural Knowledge. Cambridge: Cambridge University Press.Google Scholar
Whitehead, A. N. (1920). The Concept of Nature. Cambridge: Cambridge University Press.Google Scholar
Whitehead, A. N. (1929). Process and Reality. New York: Macmillan.Google Scholar