Article contents
An economic comparison of alternative and traditional cropping systems in the northern Great Plains, USA
Published online by Cambridge University Press: 12 February 2007
Abstract
Current production practices in the Red River Valley of North Dakota and Minnesota involve use of extensive tillage and/or herbicides to control weeds. Given the erosion potential, environmental concerns associated with herbicides, and herbicide-resistant weeds, alternative cropping systems that mitigate these problems need to be assessed economically. Furthermore, the role that government commodity programs play in the adoption of more ecologically friendly cropping systems needs to be determined. We evaluated 8 years of yield data (1994–2001) from field plots near Fargo, North Dakota, to compare the economics of two alternative cropping systems, reduced-input (RI) and no-till (NT), to a conventional tillage (CT) cropping system. The RI system relies on a more diverse rotation of soybean (SB), spring wheat (SW), sweet clover (SC) and rye, and uses fewer herbicide and fertilizer inputs than CT or NT. Both NT and CT systems rotate SB and SW. We found that CT returns averaged over $47 ha−1 more than NT during the study period. Because SC yield data were not available, the economic competitiveness of RI was calculated using break-even yields and returns for SC. Historical SC yields in Cass County, North Dakota were not statistically different from the break-even yields. However, when government program payments were considered, break-even returns for SC increased by about $15 and $18 ha−1 and break-even yields by 0.44 and 0.52 MT ha−1 for RI to compare with NT and CT, respectively. These results indicate that CT management offers greater economic return than either RI or NT and that government program payments impede adoption of more environmentally friendly cropping systems in the northern Great Plains.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2006
References
- 8
- Cited by