Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T19:02:28.507Z Has data issue: false hasContentIssue false

Ready to Face the Future: Brain Mechanisms for Cognitive Flexibility and Exploration

Published online by Cambridge University Press:  09 January 2015

Sven Collette
Affiliation:
Laboratoire de Neurosciences Cognitives, ENS - INSERM U960,29 rue d'Ulm, Paris, France
Get access

Summary

Solving the exploration/exploitation trade-off is a fundamental issue for an organism living in an uncertain and changing environment. This review describes how a stream of cognitive neuroscience studies linked exploratory behaviour to structures in the human prefrontal cortex, then identified the brain mechanisms involved in the online adaptation of behaviour relatively to reward changes, and finally revealed fundamental limitations in the processing of information at the prefrontal level. The experiments and the results we present could particularly be of interest to economists who want to understand how cognitive neuroscience identify key processes in the human brain and shapes our understanding of decision-making.

Dans un environnement incertain et changeant, il est fondamental pour un organisme vivant de résoudre le compromis exploration/exploitation. Cette revue d'articles décrit comment une série d'études en neurosciences cognitives a associé le comportement exploratoire à certaines structures du cortex préfrontal humain, puis a identifié les mécanismes cérébraux impliqués dans l'adaptation du comportement par rapport aux altérations des récompenses et enfin a mis en évidence des limites fondamentales dans le traitement des informations au niveau préfrontal. Les expériences et les résultats que nous présentons peuvent particulièrement intéresser les économistes qui souhaitent comprendre comment les neurosciences cognitives identifient des processus clés à l'œuvre dans le cerveau humain et façonnent notre compréhension de la prise de décision.

Type
I) Neurocellular Economics
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Charnov, E. L., and Orians, G. H. (1973), “Optimal Foraging: Some theoretical explorations.”.Google Scholar
[2] Stephens, D. W., & Krebs, J. R. (1986), “Foraging Theory.”, Princeton University Press.Google Scholar
[3] Gittins, J. C. (1979), “Bandit Processes and Dyncamic Allocation Indices.”, Journal of the Royal Statistical Society. Series B (Methodological), 41(2), pp. 148177.Google Scholar
[4] Whittle, P. (1980), “Multi-Armed Bandits and the Gittins Index.”, Journal of the Royal Statistical Society. Series B (Methodological), 42(2), pp. 143149.Google Scholar
[5] Weber, R. (1992), “On the Gittins Index for Multiarmed Bandits.”, The Annals of Applied Probability, 2(4), pp. 10241033.Google Scholar
[6] Weber, R. R., and Weiss, G. (1990), “On an Index Policy for Restless Bandits.”, Journal of Applied Probability, 27(3), pp. 637648.Google Scholar
[7] Sutton, R. S., and Barto, A. G. (1998), “Introduction to Reinforcement Learning.”, MIT Press Cambridge, MA, USA.Google Scholar
[8] Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., and Van Hoesen, G. W. (2001), “Prefrontal cortex in humans and apes: a comparative study of area 10.”, American journal of physical anthropology, 114(3), pp. 224241.Google Scholar
[9] Semendeferi, K., Teffer, K., Buxhoeveden, D. P., Park, M. S., Bludau, S., Amunts, K., Travis, K., and Buckwalter, J. (2010), “Spatial Organization of Neurons in the Frontal Pole Sets Humans Apart from Great Apes.”, Cerebral cortex, 20(1), pp. 14851497.Google Scholar
[10] Pessiglione, M., Petrovic, P., Daunizeau, J., Palminteri, S., Dolan, R. J., and Frith, C. D. (2008), “Subliminal instrumental conditioning demonstrated in the human brain”, Neuron, 59(4), pp. 561567.Google Scholar
[11] Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, P., and Dolan, R. J., Cortical Substrates for Exploratory Decisions in Human, 2006, Nature, 441(7095), pp. 876879.Google Scholar
[12] Yoshida, W., and Ishii, S. (2006), “Resolution of Uncertainty in Prefrontal Cortex.”, Neuron, 50(5), pp. 781789.Google Scholar
[13] Aston-Jones, G., and Cohen, J. (2005), “Adaptative Gain and the Role of the Locus Coeruleus-Norepinephrine System in Optimal Performance.”, Journal of Comparative Neurology, 493(1), pp. 99110.Google Scholar
[14] Matsumoto, M., Matsumoto, K., Abe, H., and Tanaka, K. (2007), “Medial prefrontal cell activity signaling prediction errors of action values.”, Nature neuroscience, 10(5), pp. 647656.Google Scholar
[15] Hayden, B.Y., Pearson, J.M., and Piatt, M.L. (2009), “Fictive reward signals in the anterior cingulate cortex.”, Science, 324(5929), pp. 948.Google Scholar
[16] Quilodran, R., Rothe, M., and Procyk, E. (2010), “Behavioral Shifts and Action Valuation in the Anterior Cingulate Cortex.”, Neuron, 57(2), pp. 314325.Google Scholar
[17] Amiez, C., Joseph, J. P., and Procyk, E. (2006), “Reward encoding in the monkey anterior cingulate cortex.”, Cerebral Cortex, 16(7), pp. 10401055.Google Scholar
[18] Koechlin, E., Basso, G., Pietrini, P., Panzer, S., and Grafman, J. (1999), “The role of the anterior prefrontal cortex in human cognition.”, Nature, 399(6732), pp. 148151.Google Scholar
[19] Koechlin, E., and Summerfield, C. (2007), “An information theoretical approach to prefrontal executive function.”, Trends in Cognitive Sciences, 11(6), pp. 229235. Google Scholar
[20] Kouneiher, F., Charron, S., and Koechlin, E. (2008), “Motivation and executive control in the human prefrontal cortex.”, Nature Neuroscience, 12 (7), 939945.Google Scholar
[21] Medalla, M., and Barbas, H. (2009), “Synapses with inhibitory neurons differentiate anterior cingulate from dorsolateral prefrontal pathways associated with cognitive control.”, Neuron, 61(4), pp. 609–20.Google Scholar
[22] Koechlin, E., and Hyafil, A. (2007), “Anterior prefontal function and the limits of human decision-making.”, Science, 318(5850), pp. 594598.Google Scholar
[23] Charron, S., and Koechlin, E. (2010), “Divided representation of concurrent goals in the human frontal lobes.”, Science, 328(5976), pp. 360363.Google Scholar
[24] Medalla, M., and Barbas, H. (2010), “Anterior cingulate synapses in prefrontal areas 10 and 46 suggest differential influence in cognitive control.”, The Journal of Neuroscience, 30(48), pp. 1606816081.Google Scholar
[25] Boorman, E. D., Behrens, T. E. J., Woolrich, M. W., and Rushworth, M. F. S. (2009), “How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action.”, Neuron, 62(5), pp. 733–43.Google Scholar
[26] Plassmann, H., O'Doherty, J. P., and Rangel, A. (2007), “Orbitofrontal cortex encodes willingness to pay in everyday economic transactions.”, The Journal of neuroscience, 27(37), pp. 99849988.Google Scholar
[27] Boorman, E. D., Behrens, T. E. J., and Rushworth, M. F. S. (2011), “Counter-factual choice and learning in a neural network centered on human lateral frontopolar cortex.”, PloS Biology, 9(6).Google Scholar
[27] Rolling, N., Behrens, T. E. J., Mars, R. B., and Rushworth, M. F. S. (2012), “Neural Mechanisms of Foraging.”, Science, 336 (95) pp. 9598.Google Scholar