Published online by Cambridge University Press: 17 August 2016
Consider the domain of economic environments E whose typical element is ξ = (U1, U2, Ω, ω*), where ui are Neumann-Morgenstern utility functions, Ω is a set of lotteries on a fixed finite set of alternatives, and ω* ∈ Ω. A mechanism f associates to each ξ a lottery f(ξ) in Ω. Formulate the natural version of Nash’s axioms, from his bargaining solution, for mechanisms on this domain. (e.g., IIA says that if ξ′ = (U1, U2, Δ, ω′), Δ ⊂ Ω, and f ∈ Δ then f(ξ′) = f(ξ).) It is shown that the Nash axioms (Pareto, symmetry, IIA, invariance w.r.t. cardinal transformations of the utility functions) hardly restrict the behavior of the mechanism at all. In particular, for any integer M, choose M environments ξi, i = 1, … , M, and choose a Pareto optimal lottery ωi ∈ Ωi, restricted only so that no axiom is directly contradicted by these choices. Then there is a mechanism f for which f(ξi) = ωi, which satisfies all the axioms, and is continuous on E.
Considérons le domaine E des environnements économiques. ξ = (U1, U2, Ω, ω*) en est l’élément typique où ui, sont des fonctions d’utilité Neumann-Morgenstern, Ω est un ensemble de loteries portant sur un nombre fixe et fini d’alternatives ω* ∈ Ω. Un mécanisme f associe à chaque ξ une loterie f(ξ) de Ω. Formulons pour les mécanismes dans ce domaine une version naturelle des axiomes de Nash. (Par exemple IIA montre que ξ′ = (U1, U2, Δ, ω*), Δ ⊂ Ω, et f ∈ Δ alors f(ξ′) = f(ξ).) Il est montré que ces axiomes restreignent à peine le comportement du mécanisme. En particulier, pour tout nombre entier M, on peut choisir M environnements ξi, i = 1, & , M, ainsi qu’une loterie Pareto-optimale, ωi ∈ Ωi, avec pour seule restriction que ces choix ne contredisent aucun des axiomes. Alors il existe un mécanisme f pour lequel f(ξi) = ωi, satisfaisant tous les axiomes et qui est continu sur E.