Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T16:40:29.615Z Has data issue: false hasContentIssue false

Représentations matricielles du mouvement naturel et du mouvement migratoire d'une population

Published online by Cambridge University Press:  17 August 2016

Christine Wattelar
Affiliation:
Université Catholique de Louvain(*)
Get access

Extract

La théorie du calcul matriciel a trouvé dans la démographie un terrain d'application intéressant. L'étude du mouvement démographique se prête en effet à l'utilisation des techniques mathématiques modernes. On connaît actuellement un certain nombre de représentations matricielles du mouvement d'une population par âge (ou par groupe d'âges) dont la plupart peuvent être considérées comme fondamentales et désormais classiques dans ce domaine.

Type
Études
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 1971 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

(*)

Département de Démographie de l'U.C.L. C. WATTELAR bénéficie d'un mandat d'aspirante de recherches accordé par le Fonds National Belge de la Recherche Scientifique. S. GILLET-de STEFANO a participé à la réflexion mathématique de cette étude et en a assuré la programmation.

Nous tenons à remercier les membres du Département de Démographie qui ont bien voulu lire et critiquer cet article, plus particulièrement Messieurs M. TERMOTE et G. WUNSCH ainsi que Monsieur H. ABOU GAMRAH.

References

Bibliographie

Bernardelli, H. Population Waves, Journal of Burma Research Society XXXI, Part I, 1941, pp. 118.Google Scholar
Brauer, A. On the Characteristic Roots of Power – Positive Matrices, Duke Mathematical Journal, vol 28, 1961, pp. 439445.10.1215/S0012-7094-61-02840-XGoogle Scholar
Coale, A.J. Convergence of a Human Population to a Stable Form, Journal of the American Statistical Association, vol 63, no 322, juin 1968, pp. 395435.Google Scholar
Dionne, C. Estimation des Soldes Migratoires Internes par la Comparaison de deux Recensements, Recherches Economiques de Louvain, nov. 1970, pp. 309340.Google Scholar
Fisher, R.A. The Genetical Theory of Natural Selection, First Pubi., 1930, New York, Dover Pubi. 1958.Google Scholar
Gantmacher, F.R. The Theory of Matrices (vol. II), New York, Chelsea, 1959.Google Scholar
Goodman, L.A. On the Reconciliation of Mathematical Theories of Population Growth, Journal of the Royal Statistical Society, Serie A, vol. CXXX, 1967, pp. 541553.10.2307/2982523Google Scholar
Goodman, L.A. On the Age-Sex Composition of the Population that Would Result from Given Fertility and Mortality Conditions, Demography, vol. IV, no 2, 1967, pp. 423441.10.2307/2060290Google Scholar
Goodman, L.A. An Elementary Approach to the Population Projection -Matrix,to the Population Reproductive Value, and to Related Topics in the Mathematical Theory of Population Growth, Demography, vol. V, no 1, 1968, pp. 382409.10.1007/BF03208583Google Scholar
Goodman, L.A. The Analysis of Population Growth when the Birth and Death Rates Depend upon Several Factors, Biometrics, dec. 1969, pp. 659681.10.2307/2528566Google Scholar
Hadley, G. Linear Algebra, Addison-Wesley Pubi. Comp. Inc, 1969, 290 p.Google Scholar
Kemeny, J.B. and Snell, J.L. Finite Markov Chains, Van Nostrand Cie Inc, 1969, 210 p.Google Scholar
Keyfitz, N. The Population Projections as a Matrix Operator, Demography, vol. I, no 1, 1964, pp. 5673.10.1007/BF03208445Google Scholar
Keyfitz, N. Matrix Multiplication as a Technique of Population Analysis, The Milbank Memorial Fund Quarterly, vol. XLII, no 4, oct. 1964, p. 6884.10.2307/3348564Google Scholar
Keyfitz, N. The Intrinsic Rate of Natural Increase and the Dominant Root of the Projection Matrix, Population Studies, Mars 1965, pp. 293308.10.1080/00324728.1965.10405455Google Scholar
Keyfitz, N. On the Interaction of Populations, Demography, vol. II, 1965, pp. 276288.10.2307/2060118Google Scholar
Keyfitz, N. Reconciliation of Population Models: Matrix Integral Equation and Partial Fraction, Journal of the Royal Statistical Society, Serie A, Vol. CXXX, 1967, pp. 6183.10.2307/2344038Google Scholar
Keyfitz, N. Estimating the Trajectory of a Population. Fifth Berkeley Symposium on Mathematical Statistics and Probability, California, University of California Press, 1967.Google Scholar
Keyfitz, N. and Murphy, E. Matrix and Multiple Decrement in Population Analysis, Biometrics, sept. 1967, pp. 485503.10.2307/2528010Google Scholar
Keyfitz, N. Introduction to the Mathematics of Population, Addison-Wesley Publishing Company, 1968, 450 p.Google Scholar
Keyfitz, N. Age Distribution and the Stable Equivalent, Demography, vol. VI, no 3, août 1969, pp. 261269.10.2307/2060395Google Scholar
Le Bras, H. Retour d'une Population à l'Etat Stable après une “Catastrophe”, Population, septembre- octobre 1969, pp. 861896.Google Scholar
Leslie, P.H. On the Use of Matrices in Certain Population Mathematics, Biometrika, vol XXXIII, nov. 1945, pp. 185212.Google Scholar
Leslie, P.H. Some Further Notes on the Use of Matrices in Population Mathematics, Biometrika, Vol. XXXV, déc. 1948, pp. 213245.10.1093/biomet/35.3-4.213Google Scholar
Leslie, P.H. On the Distribution in Time of Births in Successive Generations, Journal of the Royal Statistical Society, Serie A, vol.CXI, 1948, pp. 4453.10.2307/2980724Google Scholar
Lesthaeghe, R. A New Look at Demographic Transition. Congrès Général de l'UIESP, Londres 1969, (Session 1-2), 2 Op.Google Scholar
Lotka, A.J. Théorie Analytique des Associations Biologiques, Ile Partie: Analyse Démographique avec Application Particulière à l'Espèce Humaine, Paris, 1939.Google Scholar
Lewis, F.G. On the Generation and Growth of a Population, Sankya, vol. VI, 1942, pp. 9396.Google Scholar
Lopez, A. Problems in Stable Population Theory, Princeton, N.Y., Office of Population Research, 1961, 107 p.Google Scholar
Murphy, E.M., The Latent Roots of the Population Projection Matrix, Demograpy, vol III, 1966, pp. 259275.10.2307/2060077Google Scholar
Rogers, A., The Multiregional Matrix Growth Operation and the Stable Interregional Age Structure, Demography, Vol. III, no 2, 1966, p. 537544.10.2307/2060178Google Scholar
Rogers, A., Matrix Analysis of Interregional Population, Berkeley, University of California Press, 1968, 115 p.Google Scholar
Sykes, Z.M., Populations Projections and Markov Chains. Congrès de l'U.I.E.S.P., Londres, 1969 (Session 1-2), 7 p.Google Scholar
Sykes, Z.M., On Discrete Stable Population Theory, Biometrics, vol. XXV, juin 1969, pp. 285293.Google Scholar
Tabah, L. et Cosio, M.E., Mesure de la Migration Interne au moyen des Recensements. Appliquation au Mexique, Population, marsavril 1970, pp. 303346.Google Scholar
Wunsch, G., Le Calcul des Soldes Migratoires par la Méthode de la “Population Attendue” – Caractéristique et Evaluation des Biais, Population et Famille, no 18, 1969, pp. 4962.Google Scholar