Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Pellegrini, Paola
Favaretto, Daniela
and
Moretti, Elena
2007.
Knowledge-Based Intelligent Information and Engineering Systems.
Vol. 4693,
Issue. ,
p.
627.
Catanzaro, Daniele
Pesenti, Rafflaele
and
Milinkovitch, Michel C
2007.
An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle.
BMC Evolutionary Biology,
Vol. 7,
Issue. 1,
Pellegrini, Paola
and
Birattari, Mauro
2007.
Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics.
Vol. 4638,
Issue. ,
p.
31.
Joan-Arinyo, Robert
Luzón, M. V.
and
Yeguas, Enrique
2010.
Performance of Evolutionary Algorithms on the Root Identification Problem in Geometric Constraint Solving.
Computer-Aided Design and Applications,
Vol. 7,
Issue. 1,
p.
45.
Balaprakash, Prasanna
Birattari, Mauro
Stützle, Thomas
and
Dorigo, Marco
2010.
Estimation-based metaheuristics for the probabilistic traveling salesman problem.
Computers & Operations Research,
Vol. 37,
Issue. 11,
p.
1939.
Doncieux, Stéphane
Mouret, Jean-Baptiste
Bredeche, Nicolas
and
Padois, Vincent
2011.
New Horizons in Evolutionary Robotics.
Vol. 341,
Issue. ,
p.
3.
Pellegrini, Paola
and
Birattari, Mauro
2011.
Intelligent Computational Optimization in Engineering.
Vol. 366,
Issue. ,
p.
273.
Yeguas, Enrique
Joan-Arinyo, Robert
and
Victoria Luzón, María
2011.
Modeling the Performance of Evolutionary Algorithms on the Root Identification Problem: A Case Study with PBIL and CHC Algorithms.
Evolutionary Computation,
Vol. 19,
Issue. 1,
p.
107.
Pellegrini, Paola
Stützle, Thomas
and
Birattari, Mauro
2012.
A critical analysis of parameter adaptation in ant colony optimization.
Swarm Intelligence,
Vol. 6,
Issue. 1,
p.
23.
Yuan, Zhi
Montes de Oca, Marco A.
Birattari, Mauro
and
Stützle, Thomas
2012.
Continuous optimization algorithms for tuning real and integer parameters of swarm intelligence algorithms.
Swarm Intelligence,
Vol. 6,
Issue. 1,
p.
49.
Mascia, Franco
Birattari, Mauro
and
Stützle, Thomas
2013.
Learning and Intelligent Optimization.
Vol. 7997,
Issue. ,
p.
410.
Yeguas, E.
Luzón, M.V.
Pavón, R.
Laza, R.
Arroyo, G.
and
Díaz, F.
2014.
Automatic parameter tuning for Evolutionary Algorithms using a Bayesian Case-Based Reasoning system.
Applied Soft Computing,
Vol. 18,
Issue. ,
p.
185.
Maier, H.R.
Kapelan, Z.
Kasprzyk, J.
Kollat, J.
Matott, L.S.
Cunha, M.C.
Dandy, G.C.
Gibbs, M.S.
Keedwell, E.
Marchi, A.
Ostfeld, A.
Savic, D.
Solomatine, D.P.
Vrugt, J.A.
Zecchin, A.C.
Minsker, B.S.
Barbour, E.J.
Kuczera, G.
Pasha, F.
Castelletti, A.
Giuliani, M.
and
Reed, P.M.
2014.
Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions.
Environmental Modelling & Software,
Vol. 62,
Issue. ,
p.
271.
Fourie, Christoff
2015.
On Attribute Thresholding and Data Mapping Functions in a Supervised Connected Component Segmentation Framework.
Remote Sensing,
Vol. 7,
Issue. 6,
p.
7350.
Fourie, C.
and
Schoepfer, E.
2017.
Earth Observation for Land and Emergency Monitoring.
p.
223.
Moreira Ferreira, Larissa
and
Cruz Vieira, Iolanda
2017.
Rhodium Nanoparticles and Halloysite Nanoclay as Electrode Modifiers for Electroanalytical Determination of Paracetamol.
Journal of Analytical & Pharmaceutical Research,
Vol. 6,
Issue. 4,
El Hamzaoui, Youness
Bassam, Ali
Abatal, Mohamed
Rodríguez, José A.
Duarte-Villaseñor, Miguel A.
Escobedo, Lizbeth
and
Puga, Sergio A.
2017.
NEO 2015.
Vol. 663,
Issue. ,
p.
149.
El Hamzaoui, Youness
and
Antonio Alvarez Arellano , Juan
2018.
Comparison of particle swarm optimization and genetic algorithm for multiproduct batch plant design of protein production.
Journal of Analytical & Pharmaceutical Research,
Vol. 7,
Issue. 5,
Moscato, Pablo
Mathieson, Luke
and
Haque, Mohammad Nazmul
2021.
Augmented intuition: a bridge between theory and practice.
Journal of Heuristics,
Vol. 27,
Issue. 4,
p.
497.
Zhang, Biao
Pan, Quan-ke
Meng, Lei-lei
Lu, Chao
Mou, Jian-hui
and
Li, Jun-qing
2022.
An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots.
Knowledge-Based Systems,
Vol. 238,
Issue. ,
p.
107819.