Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T08:27:56.789Z Has data issue: false hasContentIssue false

On the growth rates of complexity of threshold languages

Published online by Cambridge University Press:  11 February 2010

Arseny M. Shur
Affiliation:
Ural State University, Ekaterinburg, Russia; [email protected]
Irina A. Gorbunova
Affiliation:
Ural State University, Ekaterinburg, Russia; [email protected]
Get access

Abstract

Threshold languages, which are the (k/(k–1))+-free languages over k-letter alphabets with k ≥ 5, are the minimal infinite power-free languages according to Dejean's conjecture, which is now proved for all alphabets. We study the growth properties of these languages. On the base of obtained structural properties and computer-assisted studies we conjecture that the growth rate of complexity of the threshold language over k letters tends to a constant $\hat{\alpha}\approx1.242$ as k tends to infinity.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandenburg, F.-J., Uniformly growing k-th power free homomorphisms. Theoret. Comput. Sci. 23 (1983) 6982. CrossRef
Carpi, A., Dejean's, On conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137151. CrossRef
C. Choffrut, J. Karhumäki, Combinatorics of words, edited by G. Rosenberg and A. Salomaa. Handbook of formal languages, Vol. 1, Chap. 6. Springer, Berlin (1997) 329–438.
Crochemore, M., Mignosi, F. and Restivo, A., Automata and forbidden words. Inform. Process. Lett. 67 (1998) 111117. CrossRef
Currie, J.D., Rampersad, N., Dejean's conjecture holds for n ≥ 27. RAIRO-Theor. Inf. Appl. 43 (2009) 775778. CrossRef
J.D. Currie, N. Rampersad, A proof of Dejean's conjecture, http://arxiv.org/PS_cache/arxiv/pdf/0905/0905.1129v3.pdf
Dejean, F., Sur un Theoreme de Thue. J. Combin. Theory Ser. A 13 (1972) 9099. CrossRef
Ehrenfeucht, A. and Rozenberg, G., On subword complexities of homomorphic images of languages. RAIRO Inform. Theor. 16 (1982) 303316. CrossRef
M. Lothaire, Combinatorics on words. Addison-Wesley (1983).
Mohammad-Noori, M. and Currie, J.D., Dejean's conjecture and Sturmian words. Eur. J. Combin. 28 (2007) 876890. CrossRef
Moulin-Ollagnier, J., Proof of Dejean's Conjecture for Alphabets with 5, 6, 7, 8, 9, 10 and 11 Letters. Theoret. Comput. Sci. 95 (1992) 187205. CrossRef
Pansiot, J.-J., À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297311. CrossRef
M. Rao, Last Cases of Dejean's Conjecture, accepted to WORDS'2009.
Shur, A.M., Rational approximations of polynomial factorial languages. Int. J. Found. Comput. Sci. 18 (2007) 655665. CrossRef
Shur, A.M., Combinatorial complexity of regular languages, Proceedings of CSR'2008. Lect. Notes Comput. Sci. 5010 (2008) 289301. CrossRef
A.M. Shur, Growth rates of complexity of power-free languages. Submitted to Theoret. Comput. Sci. (2008).
Shur, A.M., Comparing complexity functions of a language and its extendable part. RAIRO-Theor. Inf. Appl. 42 (2008) 647655. CrossRef
A. Thue, Über unendliche Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 7 (1906) 1–22.