Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T01:10:05.111Z Has data issue: false hasContentIssue false

Enveloppe convexe des hyperplansd'un espace affine fini

Published online by Cambridge University Press:  15 March 2004

Olivier Anglada
Affiliation:
Laboratoire d'Informatique Fondamentale, UMR 6166, Université de la Mediterranée, Faculté des sciences de Luminy, 163 avenue de Luminy, 13288 Marseille, France; [email protected]., [email protected].
Jean François Maurras
Affiliation:
Laboratoire d'Informatique Fondamentale, UMR 6166, Université de la Mediterranée, Faculté des sciences de Luminy, 163 avenue de Luminy, 13288 Marseille, France; [email protected]., [email protected].
Get access

Abstract

Dans cet article nous caractérisons, par les facettes, l'enveloppe convexe des vecteurs caractéristiques des hyperplans d'un espace projectif fini et d'un espace affine fini.

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

T. Fleiner, V. Kaibel and G. Rote, Upper bounds on the maximal number of facets of 0/1-polytopes. Eur. J. Combin. 21 (2000) 121-130 .
J.F. Maurras, Some results on the convex hull of the hamiltonian cycles of symetric complete graphs, in Comb. Programming Method Application, Proc. N.A.T.O. advanced institute, edited by B. Roy (1975) 179-180.
Maurras, J.F., An exemple of dual polytopes in the unit hypercube. Ann. Discrete Math. 1 (1977) 391-392. CrossRef
J.F. Maurras, Convex hull of the edges of a graph and near bipartite graphs. Discrete Math. 46 (1983) 257-265 .
J.F. Maurras, k-arcs et designs dans les plans projectifs finis. Document interne du GRTC, Marseille (1986).
J.F. Maurras, The Line Polytope of a finite Affine Plane. Discrete Math. 115 (1993) 283-286 .
B. Segre, Lectures on Modern Geometry. Edizioni Cremonese, Roma (1961).