Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T23:11:05.441Z Has data issue: false hasContentIssue false

Indoor radon in Tunisian spas

Published online by Cambridge University Press:  07 September 2012

S. Labidi
Affiliation:
Institut Supérieur des Technologies Médicales de Tunis (ISTM), 9 avenue du Docteur Z. Essafi, Tunis 1006, Tunisia. e-mail: [email protected]
Darwish Al-azmi
Affiliation:
Department of Applied Sciences, College of Technological Studies, Public Authority for Applied Education and Training, P.O. Box 42325, 70654 Shuwaikh, Kuwait; email: [email protected]
R. Ben Salah
Affiliation:
Faculté de Médecine de Sousse. 270, Sahloul II, 4054 Sousse, Tunisia
Get access

Abstract

Indoor radon concentrations were measured in four well-known spas of Tunisia usingnuclear track detectors. The radon concentrations in these spas were found to be in therange of 19 - 870 Bq.m-3. The equilibrium factor F between radon and itsprogeny was found to vary in the range of 0.2 - 0.5, depending upon the ventilation rateswithin the buildings of the spas. Using the exposure-dose conversion factor, the effectivedoses to patients and workers were estimated and the dose was found to vary in the range3.7 × 10-3 - 12.5 × 10-3 mSv.y-1 and 0.45 - 1.5 mSv.y-1for patients and workers, respectively. These values are well inside the limit recommendedfor the annual dose limit of 20 mSv.y-1 for an occupational worker. The radiumcontent in the groundwater of all four spas was measured and the results showed nocorrelation between the 226Ra concentration in water and radon concentration inindoor air of the investigated spas.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Améon, R. (2003) Le radon dans les stations thermales : une source d’exposition aux rayonnements ionisants, Radioprotection 38, 201-215.Google Scholar
Améon R., Beneïto A., Thoreux A. (2000) Étude de l’activité volumique en radon dans une station thermal française, Cas d’Évaux-les-bains, Rapport DPRE/SERGD/00-51, IPSN.
Besançon, F. (1990) Radon thermal inhale, Presse Thermale et Climatique 127, 1-26.Google Scholar
Bouri, S., Gasmi, M., Jaouadi, M., Souissi, A., Lahlou, M., Ben Dhia, H. (2007) Étude intégrée des données de surface et de subsurface pour la prospection des bassins hydrogéothermiques : cas du bassin de Maknassy (Tunisie centrale), Hydrological Sciences Journal 52 (6), 1298-1315.Google Scholar
CEC (Council of the European Union) (1996) Council Directive 96/29/Euratom of 13 May 1996, Off. J. Eur, Communities, L-159 of 29.6.
El May, M.V., Chahed, N., Mtimet, S. (2004) Radon concentrations in some dwellings of Tunisia, Health Phys. 86, 150-154.Google ScholarPubMed
Fontan, M., Caridroit, M., Erb, F., Tauzide-castel, C. (1980) Quelques études sur l’action des eaux, boues et gaz thermaux radioactifs de Saint-Amand-les-eaux, J. Fr. Hydrol. 11, 55-62.Google Scholar
Grünberger, O., Montoroi, J.P., Slah, N. (2004) Quantification of water exchange between a hill reservoir and groundwater using hydrological and isotopic modeling (El Gouazine, Tunisia), C. R. Geoscience 336, 1453-1462.Google Scholar
ICRP Publication 65 (1993) International Commission on Radiological Protection, Protection against radon-222 at home and at work, Ann. ICRP 23.PubMed
Inoubli, N., Gouasmia, M., Gasmi, M., Mhamdi, A., Ben Dhia, H. (2006) Integration of geological, hydrochemical and geophysical methods for prospecting thermal water resources: The case of the Hmeïma region (Central–Western Tunisia), J. Afr. Earth Sci. 46, 180-186.Google Scholar
Kovacs, I., Bender, T. (2002) The therapeutic effects of Cserkeszolo thermal water in osteoarthritis of the knee: a double blind, controlled, follow-up study, Rheumatol. Intern. 21, 218:221.Google Scholar
Labidi, S., Al Azmi, D., Mahjoubi, H., Ben Salah, R. (2010) Radon in elementary schools in Tunisia, Radioprotection 45 (2), 209-217.Google Scholar
Labidi, S., Essafi, F., Mahjoubi, H. (2006) Estimation of the radiological risk related to the presence of radon 222 in a hydrotherapy centre in Tunisia, J. Radiol. Prot. 26, 1-8.Google Scholar
Lettner, H., Hubmer, A.K., Rolle, R., Steinhausler, F. (1996) Occupational exposure to radon in treatment facilities of the radon-spa Badgastein, Austria, Environm. Intern. 22, Suppl. 1, S399-S407.Google Scholar
Manic, G., Petrovic, S., Vesna, M., Popovic, D., Todorovic, D. (2006) Radon concentrations in a spa in Serbia, Environm. Inter. 32, 533537.Google Scholar
Marley, F. (1999) Investigation of atmospheric, mechanical and other pressure effects influencing the levels of radon and radon progeny in buildings, Health Phys. 77 (5), 556-570.Google ScholarPubMed
Marley, F., Denman, A.R., Phillips, P.S. (2000) Examination of the influence of water-heated central heating systems on the levels of radon and progeny in the workplace, Radiat. Meas. 32, 15-25.Google Scholar
Nikolopoulos, D., Vogiannis, E. (2007) Modelling radon progeny concentration variations in thermal spas, Sci. Tot. Environ. 373, 82-93.Google ScholarPubMed
Nikolopoulos, D., Vogiannis, E., Petraki, E., Zisos, A., Louizi, A. (2010) Investigation of the exposure to radon and progeny in the thermal spas of Loutraki (Attica, Greece): Results from measurements and modeling, Sci. Tot. Environm. 408, 495-504.Google Scholar
Onishchenko, A., Zhukovsky, M., Veselinovic, N., Zunic, Z.S. (2010) Radium-226 concentration in spring water sampled in high radon regions, Appl. Radiat. Isot. 68, 825-827.Google ScholarPubMed
Panatto, D., Ferrari, P., Lai, P., Gallelli, G. (2006) Relevance of air conditioning for radon concentration in shops of the Savona Province, Italy, Sci. Tot. Environ. 355, 25-30.Google ScholarPubMed
Radolic, V., Vukovic, B., Smit, G., Stanic, D., Planinic, J. (2005) Radon in the spas of Croatia, J. Environ. Radioact. 83, 191-8.Google Scholar
Reyss, J.-L., Schmidt, S., Legeleux, F., Bonte, P. (1995) Large, low background well-type detectors for measurements of environmental radioactivity, Nucl. Instrum. Meth. Phys. Res. A 357, 391-397.Google Scholar
Ródenas, C., Gomez, J., Soto, J., Maraver, F. (2008) Natural radioactivity of spring water used as spas in Spain, J. Radioanal. Nucl. Chem. 277 (3), 625-630.Google Scholar
Song, G., Zhang, B., Wang, X., Gong, J., Chan, D., Bernett, J., et al. (2005) Indoor radon levels in selected hot spring hotels in Guangdong, China, Sci Total Environ. 339, 63-70.Google ScholarPubMed
Soto, J., Gomez, J. (1999) Occupational doses from radon in Spanish Spas, Health Phys. 76 (4), 398-401.Google ScholarPubMed
Sukenik, S., Flusser, D., Abu-Shakra, M. (1999) The role of spa therapy in various rheumatic diseases, Rheum. Dis. Clin. North Am. 25 (4), 883-97.Google ScholarPubMed
Szerbin, P. (1996) Natural radioactivity of certain spas and caves in Hungary, Environ. Int. 22, S389-S398.Google Scholar
UNSCEAR (2006) United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly, Annex A: Epidemiological studies of radiation and cancer.
US-EPA (2003) United States Environmental Protection Agency. Air and radiation (6608 J), EPA assessment of risk from radon in houses, EPA 402-R-03-003, Washington, DC, U.S. EPA.
Vogiannis, E., Nikolopoulos, D. (2008) Modelling of radon concentration peaks in thermal spas: application to Polichnitos and Eftalou spas (Lesvos Island-Greece), Sci. Total Environ. 405, 36-44.Google Scholar
Vogiannis, E., Nikolopoulos, D., Louizi, A., Halvadakis, C.P. (2004) Radon exposure in the thermal spas of Lesvos Island-Greece, Radiat. Prot. Dosim. 111 (1), 121-127.Google Scholar