Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T03:59:09.200Z Has data issue: false hasContentIssue false

Feasibility study of a new platform based on the Case-BasedReasoning principles to efficiently search and store voxel phantoms

Published online by Cambridge University Press:  08 March 2010

J. Henriet
Affiliation:
Université de Franche-Comté, IRMA/ENISYS/FEMTO-ST, UMR 6174 CNRS, 4 place Tharradin, 25200 Montbéliard, France.
J. Farah
Affiliation:
IRSN, LEDI/SDI/DPRH, BP-17, 92262 Fontenay-aux-Roses, France
B. Chebel-Morello
Affiliation:
Université de Franche-Comté, COSMI/AS2M/FEMTO-ST, UMR 6174 CNRS, 24 rue Alain Savary, 25000 Besançon, France
M. Bopp
Affiliation:
Université de Franche-Comté, IRMA/ENISYS/FEMTO-ST, UMR 6174 CNRS, 4 place Tharradin, 25200 Montbéliard, France.
D. Broggio
Affiliation:
IRSN, LEDI/SDI/DPRH, BP-17, 92262 Fontenay-aux-Roses, France
L. Makovicka
Affiliation:
Université de Franche-Comté, IRMA/ENISYS/FEMTO-ST, UMR 6174 CNRS, 4 place Tharradin, 25200 Montbéliard, France.
Get access

Abstract

In case of accidental exposure to radiation, it is necessary to establish as soon aspossible a dosimetry report for each victim. In most cases, this report is based onmedical images of the victim, enabling the construction of a personalized realisticnumerical model, also called a voxel phantom. Unfortunately it is not always possible toperform the medical imaging of the victim since the technology may be unavailable or toavoid additional exposure to radiation. In such cases, the commonly used method is torepresent the victim with a numerical model like the “Reference Man”, a voxelized phantomrepresentative of the average male individual. The treatment accuracy depends on thediagnosis precision and, consequently, on the similarity of the phantom and/to the victim.A precise dosimetry evaluation requires a personalised and realistic phantom whosebiometric characteristics match the victim; such model is often unavailable. TheCase-Based Reasoning (CBR) is a problem solving method for the conception of intelligentsystems. It imitates the analysis, understanding and reconstruction of the humanintelligence. The ReEPh project (Research of Equivalent Phantom) proposes to use the CBRprinciples to retrieve from a set of phantoms, the most adapted one to the irradiatedvictim. For this study, the ReEPh platform retrieves, stores and compares existingphantoms to a victim. A graphic interface enables the user to compare victim’scharacteristics to the ones of the most similar phantoms available in the database. Thisdefines a similarity index presenting the equivalence between the victim and the suggestedphantom. Moreover, a confidence index is also assessed to define the uncertainty impliedby the RaPC choice procedure.

Type
Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aamodt A. (2004) Knowledge-Intensive Case-Based Reasoning and Sustained Learning, in Proceedings of the 9th European Conference on Artificial Intelligence, ECCBR’04, Lecture Notes in Artificial Intelligence, Springer, pp. 1–15.
Broggio, D., Zhang, B., de Carlan, L., Desbée, A., Lamart, S., le Guen, B., Bailloeuil, C.Franck, D. (2009) Analytical and Monte Carlo assessment of activity and local dose after a wound contamination by activation products, Health Phys. 96, 155163.CrossRefGoogle ScholarPubMed
Caon, M., Bibbo, G., Pattison, J. (1999) An EGS-4ready tomographic computational model of 14-year-old female torso for calculating organ doses from CT examinations, Phys. Med. Biol. 44, 22132225.CrossRefGoogle Scholar
Clairand I. (1999) Développement de nouveaux modèles physiques dédiés à la dosimétrie interne par l’utilisation du code de Monte Carlo EGS, Thèse de l’Université Paul Sabatier, Toulouse.
Clairand, I., Bouchet, L.G., Ricard, M., Durigon, M., Di Paola, M.Aubert, B. (2000) Improvement of internal dose calculations using mathematical models of different adult heights, Phys. Med. Biol. 45, 27712785.CrossRefGoogle ScholarPubMed
Clairand, I., Huet, C., Trompier, F.Bottollier-Depois, J.-F. (2008) Physical dosimetric reconstruction of a radiological accident due to gammagraphy equipment that occurred in Dakar and Abidjan in summer 2006, Rad. Measur. 43, 698703.CrossRefGoogle Scholar
Cristy M., Eckerman K.F. (1987) Specific absorbed fractions of energy at various ages from internal photons sources, ORNL Report/TM-8381, Oak Ridge, Oak Ridge National Laboratory.
de Carlan, L., Aubineau-Lanièce, I., Lemosquet, A., Borissov, N., Jourdain, J.R., Jeanbourquin, D., Le Guen, B.Franck, D. (2003) Application of new imaging and calculation techniques to activity and dose assessment in the case of a 106Ru contaminated wound, Rad. Prot. Dosim. 105, 219223.CrossRefGoogle Scholar
Dimbylow, P.J. (1998) Induced current densities from low-frequency magnetic fields in a 2 mm resolution, anatomically realistic model of the body, Phys. Med. Biol. 43, 221–.CrossRefGoogle Scholar
Easterley, C.E., Allgood, G., Eckerman, K.F., Knee, B., Maston, M., MacNeilly, G., Munro, J., Munro, N., Toerite, R., Van Hoy, B. (1998) The virtual human: a diagnostic tool for human studies and health effects in the 21st century, SPIE Int. Soc. Opt. Engineer. 3253, 150154.Google Scholar
Fusch B., Lieber J., Mille A., Napoli A. (2006) Une première formalisation de la phase d’élaboration du raisonnement à partir de cas, in Actes du 14e atelier du raisonnement à partir de cas, Besançon, France..
Huet, C., Lemosquet, A., Clairand, I., Rioual, J.B., Franck, D., de Carlan, L., Aubineau-Lanièce, I.Bottollier-Depois, J.F. (2009) SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005, Health Phys. 96, 7683.CrossRefGoogle ScholarPubMed
ICRP Publication 89 (2002) Basic anatomical and physiological data for use in radiological protection, Ann. ICRP 32(3-4).
ICRU (1992) Phantoms and Computational Models in Therapy, Diagnosis and Protection, in International Commission on Radiation Units and Measurements, Report 48.
Jacob, S.W. (1999) The complete visible man: the complete high resolution male and female anatomical datasets from the visible human project, J. Am. Med. Assoc. 281, 765.CrossRefGoogle Scholar
Kolodner J. (1993) Case-Based Reasoning, Morgan Kaufmann Publishers.
Kramer R., Zankl M., Williams G., Dexter G. (1982) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part I: the male (Adam) and female (Eva) adult mathematical phantoms, Report GSF-Bericht S-885, München, GSF.
Kramer, R., Vieira, J.W., Khoury, H.J., Lima, F.R.A.Fülle, D. (2003) All About MAX: A Male Adult VoXel phantom for Monte Carlo Calculations in Radiation Protection Dosimetry, Phys. Med. Biol. 48, 12391269.CrossRefGoogle ScholarPubMed
Kramer, R., Khoury, H.J., Vieira, J.W., Loureiro, E.C.M., Lima, V.J.M., Lima, F.R.A.Hoff, G. (2004) All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry, Phys. Med. Biol. 49, 52035216.CrossRefGoogle ScholarPubMed
Lemosquet, A., de Carlan, L.Clairand, I. (2003) Voxel anthropomorphics phantoms: review of models used for inionizing radiation protection, Radioprotection 38, 509528.CrossRefGoogle Scholar
Lorin de la Grandmaison, G., Clairand, I.Durigon, M. (2001) Organ weight in 684 adult autopsies: new tables for a Caucasoid population, Forensic. Sci. Intern. 119, 149154.CrossRefGoogle Scholar
Makovicka, L., Vasseur, A., Sauget, M., Martin, E., Gschwind, R., Henriet, J.Salomon, M. (2009) The future of new calculation concepts in dosimetry based on the Monte Carlo methods, Radioprotection 44, 7788.CrossRefGoogle Scholar
Mille A. (1999) Tutorial CBR : Etat de l’art de raisonnement à partir de cas, Plate-forme AFIA’99, Palaiseau, France.
Mille A., Fuchs B., Herbeaux O. (1996) A unifying Framework for Adaptation in Case-Based Reasoning, in Workshop on Adaptation in Case-Based Reasoning, ECAI’96, Budapest, Hungary, pp. 22–28.
Padilla, L., Lee, C., Milner, R., Shahlaee, A.Bolch, W.E. (2008) Canine Anatomic Phantom for Preclinical Dosimetry in Internal Emitter Therapy, J. Nucl. Med. 49, 446452.CrossRefGoogle ScholarPubMed
Rasovska I. (2006) Contribution à une méthode de capitalisation des connaissances basée sur le raisonnement à partir de cas : Application au diagnostic dans une plateforme d’e-maintenance, Thèse de l’Université de Franche-Comté, Besançon, France
Snyder W.S., Ford M.R., Warner G.G. (1978) Estimates of absorbed fractions for mono-energetic photons sources uniformy distributed in various organs of a heterogeneous phantom, MIRD pamphlet number 5 revised, New York, The Society of Nuclear Medicine.
Tanaka, G.I., Kawamura, H.Nakahara, Y. (1979) Reference Japanese man-I. Mass of organs and other characteristics of normal Japanese, Health Phys. 36, 333346.CrossRefGoogle ScholarPubMed
Xu, X.G., Chao, T.C.Bozkurt, A. (2000) VIP MAN, an imaged-based wholebody adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations, Health Phys. 78, 476486.CrossRefGoogle Scholar
Zaidi, H., Xu, X.G. (2007) Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modelling in radiological sciences, Annu. Rev. Biomed. Eng. 9, 471500. CrossRefGoogle Scholar
Zankl, M., Viet, R., Williams, G., Schneider, K., Fendel, H., Petoussi, N., Drexler, (1988) The construction of computer tomographic phantoms and their application in radiology and radiation protection, Rad. Environm. Biophys. 27, 153164.CrossRefGoogle Scholar
Zankl, M., Panzer, W., Petoussi-Hens, N.Drexler, G. (1995) Organ doses for children from computed tomographic examinations, Rad. Prot. Dosim. 57, 393396.CrossRefGoogle Scholar
Zankl, M.Wittmann, A. (2001) The adult male voxel model ‘Golem’ segmented from whole-body CT patient data, Rad. Environm. Biophys. 40, 153162.CrossRefGoogle ScholarPubMed
Zubal, I.G., Harrell, C.R., Smith, E.O., Rattner, Z., Gindi, G.Hoffer, P.B. (1994) Computerized three dimensional segmented human anatomy, Med. Phys. 21, 299302.CrossRefGoogle ScholarPubMed