Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T10:13:43.587Z Has data issue: false hasContentIssue false

Biokinetic models for rats exposedto repeated inhalation of uranium: implications for the monitoring of nuclear workers

Published online by Cambridge University Press:  07 March 2006

M. Monleau
Affiliation:
IRSN/DRPH/SRBE, Laboratoire de radiotoxicologie expérimentale, BP 166, 26702 Pierrelatte, France.
E. Blanchardon
Affiliation:
IRSN/DRPH/SDI, Laboratoire d’évaluation de la dose interne, BP 17, 92262 Fontenay-aux-Roses, France.
M. Claraz
Affiliation:
IRSN/DRPH/SRBE, Laboratoire de radiotoxicologie expérimentale, BP 166, 26702 Pierrelatte, France.
F. Paquet
Affiliation:
IRSN/DRPH/SRBE, Laboratoire de radiotoxicologie expérimentale, BP 166, 26702 Pierrelatte, France.
V. Chazel
Affiliation:
IRSN/DRPH/SRBE, Laboratoire de radiotoxicologie expérimentale, BP 166, 26702 Pierrelatte, France.
Get access

Abstract

For dose assessment following chronic or accidental inhalation of radioactive aerosols, the dosimetric models of the International Commission on Radiological Protection (ICRP) provide dose coefficients, retention and excretion functions. Unknown date or dates of intake is the major source of uncertainty in dose assessment during routine monitoring of nuclear workers. The two assumptions commonly made in dose assessment from an unknown time pattern of intake have been tested experimentally with a model of repeated inhalation by rats. The hypothetical intake derived from lung measurement was relatively reliable under the two hypotheses. The hypothetical intake derived from excreta measurement depended on the choice of hypothesis and on the real time pattern of intake.

Type
Other
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, S., Charuau, J., Rateau, G., Vavaseur, C., Métivier, H. (1989) Design of a new inhalation device for rodents and primates, J. Aeros. Sci. 20, 647-656. CrossRef
Bailey, M.R., Ansoborlo, E., Guilmette, R.A., Paquet, F. (2003) Practical application of the ICRP Human Respiratory Tract Model, Radiat. Prot. Dosim. 105, 71-76. CrossRef
Birchall A., James A.C. (1987) A general algorithm for solving compartmental models with constant coefficients and its implementation on a microcomputer, National Radiological Protection Board. NRPB-R216. Chilton.
Boffetta, P., Cardis, E., Vainio, H., Coleman, M.P., Kogevinas, M., Nordberg, G., Parkin, D.M., Partensky, C., Shuker, D., Tomatis, L. (1991) Cancer risks related to electricity production, Eur. J. Cancer 27, 1504-1519. CrossRef
Chazel, V., Houpert, P., Paquet, F., Ansoborlo, E. (2001) Effect of absorption parameters on calculation of the dose coefficient: example of classification of industrial uranium compounds, Radiat. Prot. Dosim. 94, 261-268. CrossRef
Ejnik, J.W., Hamilton, M.M., Adams, P.R., Carmichael, A.J. (2000) Optimal sample preparation conditions for the determination of uranium in biological samples by kinetic phosphorescence analysis (KPA), J. Pharm. Biomed. Anal. 24, 227-235. CrossRef
Fulco C.E., Liverman C.T., Sox H.C. (2000) Depleted Uranium, Gulf War and Health.1. Depleted uranium, Pyridostigmine bromide, Sarin and Vaccines: 89-168. Fulco, Liverman and Sox. National Academies press, Washington.
Hedaya, M.A., Birkenfeld, H.P., Kathren, R.L. (1997) A sensitive method for the determination of uranium in biological samples utilizing kinetic phosphorescence analysis (KPA), J. Pharm. Biomed. Anal. 15, 1157-1165. CrossRef
ICRP publication 30 (1979) Limits for intakes of radionuclides by workers, part 1, Ann. ICRP 2, 3-4. PubMed
ICRP publication 66 (1994) Human respiratory tract model for radiological protection, Ann. ICRP 24, 1-3.
ICRP publication 69 (1995) Age-dependent doses to members of the public from intake of radionucleides: Part 3 Ingestion dose coefficients, Ann. ICRP 25, 1.
ICRP publication 78 (1997) Individual monitoring for internal exposure of workers, Ann. ICRP 27, 3-4. CrossRefPubMed
Leggett, R.W., Pellmar, T.C. (2003) The biokinetics of uranium migrating from embedded DU fragments, J. Environ. Radioact. 64, 205-225. CrossRef
Malarbet, J.L. (1998) Calculations of radionuclide organ retentions from ICRP biokinetic recycling models, Radiat. Prot. Dosim. 79, 379-381. CrossRef
McDiarmid M.A., Hooper F.J., Squibb K., McPhaul K., Engelhardt S.M., Kane R., DiPino R., Kabat M. (2002) Health effects and biological monitoring results of Gulf War veterans exposed to depleted uranium, Mil. Med. 167 (Suppl. 2), 123-124.
McDiarmid, M.A., Squibb, K., Engelhardt, S.M. (2004) Biologic monitoring for urinary uranium in gulf war I veterans, Health Phys. 87, 51-56. CrossRef
Monleau M., Blanchardon E., Claraz M., Paquet F., Chazel V. (in press) The effect of repeated inhalation on the distribution of uranium in rats, J. Toxicol. Environ. Health.
Phalen, R.F., Mannix, R.C., Drew, R.T. (1984) Inhalation exposure methodology, Environ. Health Perspect. 56, 23-34. CrossRef
Stradling, N., Hodgson, A., Ansoborlo, E., Berard, P., Etherington, G., Fell, T., LeGuen, B. (2003) Optimising monitoring regimens for inhaled uranium oxides, Radiat. Prot. Dosim. 105, 109-114. CrossRef