Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T10:28:29.769Z Has data issue: false hasContentIssue false

Contribution des atteintesgastro-intestinales dans le développement du syndrome de défaillance multi-viscérale radio-induit

Published online by Cambridge University Press:  07 March 2006

P. Monti
Affiliation:
IRSN/DRPH/SRBE, Laboratoire de thérapie cellulaire et radioprotection accidentelle, BP 17, 92262 Fontenay-aux-Roses Cedex, France.
A. Van Der Meeren
Affiliation:
IRSN/DRPH/SRBE, Laboratoire de thérapie cellulaire et radioprotection accidentelle, BP 17, 92262 Fontenay-aux-Roses Cedex, France. Adresse actuelle : CEA, DSV/DRR, Laboratoire de radiotoxicologie, BP 12, 91680 Bruyères-le-Chatel, France.
N. M. Griffiths
Affiliation:
IRSN/DRPH/SRBE, Laboratoire de thérapie cellulaire et radioprotection accidentelle, BP 17, 92262 Fontenay-aux-Roses Cedex, France. Adresse actuelle : CEA, DSV/DRR, Laboratoire de radiotoxicologie, BP 12, 91680 Bruyères-le-Chatel, France.
Get access

Abstract

Une atteinte sévère au niveau de la sphère gastro-intestinale, consécutive à une exposition aux rayonnements ionisants à forte dose, est un risque majeur et peut impliquer le pronostic vital de la personne irradiée. En effet, de par sa radiosensibilité importante, l’intestin représente une cible directe lors d’une irradiation, mais peut également être affecté de façon indirecte via les lésions qui apparaissent au niveau d’autres organes, comme les brûlures cutanées ou l’atteinte du système hématopoïétique. De façon similaire à ce qui peut être observé dans d’autres cas d’agressions sévères du tractus gastro-intestinal, l’exposition aux rayonnements ionisants se caractérise notamment par la perte d’intégrité de la barrière intestinale qui peut entraîner, voire perpétuer la libération de médiateurs inflammatoires et/ou anti-inflammatoires ; ce type de réponse pourrait à son tour générer des atteintes au niveau d’autres organes. Dans ce contexte, l’intestin « lésé » peut être considéré comme jouant un rôle clé dans la mise en place du syndrome de défaillance multi-viscérale (SDMV) radio-induit. La spécificité des effets de l’irradiation repose sur le fait que les compartiments tissulaires et vasculaires sont conjointement altérés avec une aplasie cellulaire plus ou moins intense, une atteinte de la fonction de barrière et la présence d’un état inflammatoire ; ainsi, tous ces éléments doivent être pris en considération dans la réponse radio-induite de l’intestin, afin de mieux déterminer le rôle de cette dernière dans la pathologie mixte du syndrome aigu d’irradiation (SAI) à court et à long terme.

Type
Other
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C.A., Sambol, T., Xu, D.Z., Ly, Q., Granger, D.N., Deitch, E.A. (2001) Hemorrhagic shock induced upregulation of P-selectin expression is mediated by factors in mesenteric lymph and blunted by mesenteric lymph duct interruption, J. Trauma 51, 625-631. CrossRef
Anjaria, D.J., Rameshwar, P., Deitch, E.A., Xu, D.Z., Adams, C.A., Forsythe, R.M., Sambol, J.T., Hauser, C.J., Livingston, D.H. (2001) Hematopoietic failure after hemorrhagic shock is mediated partially through mesenteric lymph, Crit. Care Med. 29, 1780-1785. CrossRef
Anno, G.H., Baum, S.J., Withers, H.R., Young, R.W. (1989) Symptomatology of acute radiation effects in human after exposure to doses of 0.5-30 Gy, Health Phys. 56, 821-838. CrossRef
Baranov, A.E. (1994) Allogeneic bone marrow transplantation after severe uniform total body irradiation: experience from recent (Nyasvizh, Belarus) and previous radiation accidents, Adv. Biosci. 94, 281-293.
Baue, A.E. (1996) MOF/MODS, SIRS: an update, Shock 6, S1-S5. CrossRef
Becciolini A., Balzi M., Potten C.S. (1995) Radiation effects on proliferation and differentiation in the rat small intestine, in Radiation and gut (C.S. Potten, J.H. Hendry, Eds.) pp. 85-143. Elsevier Science, Amsterdam.
Bion, J.F. (1999) Is the gut responsible for multiple organ failure? Schweiz Med. Wochenschr. 129, 1600-1604.
Bone, R.C. (1996) Immunologic dissonance. A continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS), Ann. Intern. Med. 125, 686-687. CrossRef
Buell, M.G., Harding, R.K. (1989) Proinflammatory effects of local abdominal irradiation on rat gastrointestinal tract, Dig. Dis. Sci. 34, 390-399. CrossRef
Bush, K.T., Keller, S.H., Nigam, S.K. (2000) Genesis and reversal of ischaemic phenotype in epithelial cells, J. Clin. Invest. 106, 621-626. CrossRef
Chen, L.W., Hsu, C.M., Cha, M.C., Chen, J.S., Chen, S.C. (1999) Changes in gut mucosal nitric oxide synthase (NOS) activity after thermal injury and its relation with barrier failure, Shock 11, 104-110. CrossRefPubMed
Cho C.H., Kammerer R.A., Lee H.J., Yasunaga K., Kim K.T., Choi H.H., Kim W., Kim S.H., Park S.K., Lee G.M., Koh G.Y. (2004) Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis, Proc. Natl. Acad. Sci. USA 101, 5553-5558.
Cockerham, L.G., Doyle, T.F., Trumbo, R.B., Nold, J.B. (1984) Acute post-irradiation canine intestinal blood flow, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 45, 65-72. CrossRef
De Both, N.J., Verney, M. (1976) Epithelial regeneration of transposed intestine after high doses of X-irradiation, Int. J. Radiat. Res. 29, 17-26.
Debbage, P.L., Seidl, S., Kreczy, A., Hutzler, P., Pavelka, M., Lukas, P. (2000) Vascular permeability and hyperpermeability in a murine adenocarcinoma after fractionated radiotherapy: an ultrastructural tracer study, Histochem. Cell Biol. 114, 259-275.
Deitch, E.A. (1992) Multiple organ failure. Pathophysiology and potential future therapy, Ann. Surg. 216, 117-134. CrossRef
Deitch, E.A. (2001) Role of the gut lymphatic system in multiple organ failure, Curr. Opin. Crit. Care 7, 92-98. CrossRef
Deitch, E.A. (2002) Bacterial translocation or lymphatic drainage of toxic products from the gut: What is important in human beings? Surgery 131, 241-244. CrossRef
Deitch, E.A., Xu, D., Franko, L., Ayala, A., Chaudry, I.H. (1994) Evidence favoring the role of the gut as a cytokine-generating organ in rats subjected to haemorrhagic shock, Shock 1, 141-145. CrossRefPubMed
Eddy H.A., Casarett G.W. (1968) Intestinal vascular changes in the acute radiation syndrome, in Gastrointestinal Radiation Injury (M.F. Sullivan, Ed.) pp. 385-395. Amsterdam Excerpta Medica Foundation.
Faries, P.L., Simon, R.J., Martella, A.T., Lee, M.J., Machiedo, G.W. (1998) Intestinal permeability correlates with severity on injury in trauma patients, J. Trauma 44, 1031-35. CrossRef
Flynn D.F., Mihalakis I., Mauceri T., Pins M.R. (1995) Gastrointestinal syndrome after accidental exposure during radiotherapy, in Radiation and the Gastrointestinal Tract (A. Dubois, G.L. King, D.R. Livengood, Eds.) pp. 225-234. CRC press.
Freeman, S.L., Mac Naughton, W.K. (2000) Ionizing radiation induces iNOS-mediated epithelial dysfunction in the absence of an inflammatory response, Am. J. Physiol. Gastrointest. Liver Physiol. 278, G243-G250.
Gianotti, L., Alexander, J.W., Pyles, T., James, L., Babcock, G.F. (1993) Relationship between extent of burn injury and magnitude of microbial translocation from the intestine, J. Burn Care Rehab. 14, 336-342. CrossRef
Goris, R.J., Beokhorst, P.A., Nuytinck, K.S. (1985) Multiple organ failure: generalized autodestructive inflammation, Arch. Surg. 120, 1109-1115. CrossRef
Griffiths N.M., Lebaron-Jacobs L. (2001) Place du syndrome gastro-intestinal dans la radiopathologie accidentelle, in Journée scientifique d’information sur « les lésions radio-induites de l’intestin », EDF-Service de radioprotection, n° 18, pp. 4-7.
Guan, J., Jin, D.D., Jin, L.J., Lu, Q. (2002) Apoptosis in organs of rats in early stage after polytrauma combined with shock, J. Trauma 52, 104-111.
Guo, W., Ding, J., Huang, Q., Jerrells, T., Deitch, E.A. (1995) Alterations in intestinal bacterial flora modulate the systemic cytokine response to hemorrhagic shock, Am. J. Physiol. Gastrointest. Liver Physiol. 269, G827-G832.
Haimovitz-Friedman, A., Cordon-Cardo, C., Bayoumy, S., Garzotto, M., McLoughlin, M., Gallily, R., Edwards, C.K., Schuchman, E.H., Fuks, Z., Kolesnick, R. (1997) Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation, J. Exp. Med. 186, 1831-1841. CrossRef
Harari, Y., Weisbrodt, N.W., Moody, F.G. (2000) Ileal mucosal response to bacterial toxin challenge, J. Trauma 49, 306-313. CrossRef
Hirama, T., Tanosaki, S., Kandatsu, S., Kuroiwa, N., Kamada, T., Tsuji, H., Yamada, S., Katoh, H., Yamamoto, N., Tsujii, H., Suzuki, G., Akashi, M. (2003) Initial medical management of patients severely irradiated in the Tokai-mura criticality accident, Br. J. Radiol. 76, 246-253. CrossRef
Husain, K.D., Coopersmith, C.M. (2003) Role of intestinal apoptosis in survival, Curr. Opin. Crit. Care 9, 159-163. CrossRef
IAEA (1996) The Radiological Accident at the Irradiation Facility in Nesvizh, Vienna 1996, pp. 46-65.5.
Kaiser, V.L., Sifri, Z.C., Dikdan, G.S., Berezina, T., Zaets, S., Lu, Q., Xu, D., Deitch, E.A. (2005) Trauma-hemorrhagic shock mesenteric lymph from rat contains a modified form of albumin that is implicated in endothelial cell toxicity, Shock 23, 417-425. CrossRefPubMed
Kale, I.T., Kuzu, M.A., Berkem, H., Berkem, R., Acar, N. (1998) The presence of hemorrhagic shock increases the rate of bacterial translocation in blunt abdominal trauma, J. Trauma Inj. Infect. Crit. Care 44, 171-174. CrossRef
Koike, K., Moore, E.E., Moore, F.A., Read, R.A., Carl, V.S., Banerjee, A. (1994) Gut ischemia/reperfusion produces lung injury independent of endotoxin, Crit. Care Med. 22, 1438-1444. CrossRef
Kompan, L., Kremzar, B., Gadzijev, E., Prosek, M. (1999) Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury, Intensive Care Med. 25, 157-161. CrossRef
Kuebler, J.F., Toth, B., Rue, L.W., Bland, K.I., Chaudry, I.H. (2003) Differential alterations in intestinal permeability after trauma-hemorrhage, J. Surg. Res. 112, 198-204. CrossRef
Lamerton, L.F., Lord, B.I. (1964) Studies of cell proliferation under continuous irradiation, Nat. Cancer Inst. Monogr. 14, 185-198.
Linard, C., Ropenga, A., Vozenin-Brotons, C., Chapel, A., Mathe, D. (2003) Abdominal irradiation increases inflammatory cytokine expression and activates NF-kappaB in rat ileal muscularis layer, Am. J. Physiol. Gastrointest. Liver Physiol. 285, G556-G565. CrossRef
Lu, Q., Xu, D.Z., Davidson, M.T., Hasko, G., Deitch, E.A. (2004) Hemorrhagic shock induces endothelial cell apoptosis, which is mediated by factors contained in mesenteric lymph, Crit. Care Med. 32, 2464-2470. CrossRef
Magnotti, L.J., Xu, D.Z., Deitch, E.A. (1999) Gut-derived mesenteric lymph. A link between burn and lung injury, Arch. Surg. 134, 1333-1341. CrossRef
Maj, J.G., Paris, F., Haimovitz-Friedman, A., Venkatraman, E., Kolesnick, R., Fuks, Z. (2003) Microvascular function regulates intestinal crypt response to radiation, Cancer Res. 63, 4338-4341.
Mallick, I.H., Yang, W., Winslet, M.C., Seifamian, A.M. (2004) Ischemia-reperfusion injury of the intestine and protective strategies against injury, Dig. Dis. Sci. 49, 1359-1377. CrossRef
Messick, W.J., Koruda, M., Meyer, A., Zimmerman, K. (1994) Differential changes in intestinal permeability following burn injury, J. Trauma 36, 306-312. CrossRef
Monti, P., Van der Meeren, A., Wysocki, J., Griffiths, N.M. (2004) Abdominal irradiation: a model of severe trauma and inflammation, Shock 21, 154-613A. CrossRef
Moore, F.A. (1999) Role of gut hypoperfusion in the development of Systemic Inflammatory Response Syndrome (SIRS) and Multiple Organ Failure (MOF), Am. J. Surg. 178, 449-453. CrossRef
Moore, F.A., Moore, E.E., Poggetti, R., McAnena, O., Peterson, V., Abernathy, C.M., Parsons, P.E. (1991) Gut bacterial translocation via the portal vein: A clinical perspective with major torso trauma, J. Trauma 31, 629-638. CrossRef
Nejdfors, P., Ekelund, M., Westrom, B.R., Willen, R., Jeppsson, B. (2000) Intestinal permeability is increased after radiation therapy, Dis. Colon Rectum 43, 1582-1588. CrossRef
Panès, J., Anderson, D.C., Miyasaka, M., Granger, D.N. (1995) Role of leukocyte-endothelial cell adhesion in radiation-induced microvascular dysfunction in rats, Gastroenterology 108, 1761-1769. CrossRef
Pape, H.C., Dwenger, A., Regel, G., Auf’M’Kolck M., Gollub F, Wisner D., Sturm J.A., Tscherne H. (1994) Increased gut permeability after multiple trauma, Br. J. Surg. 81, 850-852. CrossRef
Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., Haimowitz-Friedman, A., Cordon-Cardo, C., Kolesnick, R. (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice, Science 293, 293-297. CrossRef
Potten, C.S. (1990) A comprehensive study of the radiobiological response of the murine (BDF1) intestine, Int. J. Radiat. Biol. 58, 925-973. CrossRef
Potten C.S. (1995) Effects of radiation on murine gastrointestinal cell proliferation, in Radiation and Gut (C.S. Potten, J.H. Hendry, Eds.) pp. 61-84. Elsevier Science, Amsterdam.
Potten, C.S., Grant, H.K. (1998) The relationship between ionising radiation-induced apoptosis and stem cells in the small and large intestine, Br. J. Cancer 78, 993-1003 CrossRef
Reidy, J.J., Ramsey, G. (1990) Clinical trials of selective decontamination of the digestive tract: a review, Crit. Care Med. 18, 1449-1456. CrossRef
Roumen, R.M., Hendricks, T., Wevers, R.A., Gories, J.A. (1993) Intestinal permeability after severe trauma and hemorrhagic shock is incresased without relation to septic complications, Arch. Surg. 125, 453-457. CrossRef
Ryan, C.M., Yarmush, M.L., Burke, J.F., Tompkins, R.G. (1992) Increased gut permeability early after burns correlates with the extent of injury, Crit. Care Med. 20, 1508-1512. CrossRef
Sambol, J.T., White, J., Horton, J.W., Deitch, E.A. (2002) Burn-induced impairment of cardiac contractile function is due to gut-derived factors transported in mesenteric lymph, Shock 18, 272-276. CrossRef
Solheim, K.E., Laerum, F., Stordahl, A., Aase, S. (1991) Urinary excretion of iohexol after enteral administration in rats with radiation injury of the small intestine, Scand. J. Gastroenterol. 26, 1097-1106. CrossRef
Spitzer T.R. (1995) Clinical aspects of irradiation-induced alimentary tract injury, in Radiation and the Gastrointestinal tract (A. Dubois, G.L. King, D.R. Livengood, Eds.) pp. 3-20. CRC Press, Boca Raton.
Tani, T., Fujino, M., Hanasawa, K., Shimizu, T., Endo, Y., Kodama, M. (2000) Bacterial translocation and tumor necrosis factor-alpha gene expression in experimental hemorrhagic shock, Crit. Care Med. 28, 3705-3709. CrossRef
Tawadrous, Z.S., Delude, R.L., Fink, M.P. (2002) Resuscitation from hemorrhagic shock with Ringer’s ethyl pyruvate solution improves survival and ameliorates intestinal mucosal hyperpermeability in rats, Shock 17, 473-477. CrossRefPubMed
Thiagarajah, J., Gourmelon, P., Griffiths, N.M., Lebrun, F., Naftalin, R.J., Pedley, K.C. (2000) Radiation-induced cytochrome c release causes loss of colonic fluid absorption by damage to crypts and pericryptal myofibroblasts, Gut 47, 675-684. CrossRef
Van der Meeren, A., Mouthon, M.A., Vandamme, M., Squiban, C., Aigueperse, J. (2004) Combinations of cytokines promote mouse survival and limit acute radiation damage in concert with amelioration of vascular damage, Radiat. Res. 161, 549-559. CrossRef
Van der Meeren, A., Monti, P., Vandamme, M., Squiban, C., Wysocki, J., Griffiths, N. (2005) Abdominal radiation exposure elicits inflammatory responses and abscopal effects in the lungs of mice, Radiat. Res. 163, 144-152. CrossRef
Varedi, M., Greeley, G.H., Herndon, D.N., Englander, E.W. (1999) A thermal injury-induced circulating factor(s) compromises intestinal cell morphology, proliferation and migration, Am. J. Physiol. Gastrointest. Liver Physiol. 277, G175-G182.
Varedi, M., Chinery, R., Greeley, G.H., Herndon, D.N., Englander, E.W. (2001) Thermal injury effects on intestinal crypt cell proliferation and death are cell position dependent, Am. J. Physiol. Gastrointest. Liver Physiol. 280, G157-G163.
Vigneulle R.M. (1995) Nearby shielding influences survival of the irradiated intestine, in Radiation and the Gastrointestinal tract (A. Dubois, G.L. King, D.R. Livengood, Eds.) pp. 161-170. CRC Press, Boca Raton.
Vigneulle, R.M., Rao, S., Fasano, A., MacVittie, T.J. (2002) Structural and functional alterations of gastrointestinal tract following radiation-induced injury in the rhesus monkey, Dig. Dis. Sci. 47, 1480-1491. CrossRef
Wang, W., Smail, N., Wang, P., Chaudry, I.H. (1998) Increased gut permeability after hemorrage is associated with upregulation of local and systemic IL-6, J. Surg. Res. 79, 39-42. CrossRef
Willoughby, D.A. (1960) Pharmacological aspects of the vascular permeability changes in the rat’s intestine following abdominal irradiation, Br. J. Radiol. 23, 515-519. CrossRef
Zallen, G., Moore, E.E., Johnson, J.L., Tamura, D.Y., Ciesla, D.J., Silliman, C.C. (1999) Post hemorrhagic shock mesenteric lymph primes circulating neutrophils and provokes lung injury, J. Surg. Res. 83, 83-88. CrossRef
Ziegler, T.R., Smith, R.J., O’Dwyer S.T., Demling R.H., Wilmore D.W. (1988) Increased intestinal permeability associated with infection in burn patients, Arch. Surg. 123, 1313-1319. CrossRef