Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:38:29.989Z Has data issue: false hasContentIssue false

Variations in 14C Reservoir Ages of Black Sea Waters and Sedimentary Organic Carbon During Anoxic Periods: Influence of Photosynthetic Versus Chemoautotrophic Production

Published online by Cambridge University Press:  18 July 2016

Michel Fontugne*
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement (UMR1572 CNRS/CEA/UVSQ), Domaine du CNRS, 91198 Gif sur Yvette cedex, France
François Guichard
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement (UMR1572 CNRS/CEA/UVSQ), Domaine du CNRS, 91198 Gif sur Yvette cedex, France
Ilham Bentaleb
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement (UMR1572 CNRS/CEA/UVSQ), Domaine du CNRS, 91198 Gif sur Yvette cedex, France Institut des Sciences de l'Evolution - Montpellier (I.S.E.-M.)
Claudia Strechie
Affiliation:
GeoEcoMar, National Institute for Marine Geology and Geo-ecology, Str. D. Onciul nr. 23–25, 024053 Bucharest, Romania
Gilles Lericolais
Affiliation:
IFREMER, Centre de Brest, DCB/GM - BP 70, F-29280 Plouzané cedex, France
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon activity of dissolved inorganic carbon has been measured in the northwestern Black Sea. Both continental shelf and open-sea profiles show that surface waters are in equilibrium with the atmosphere. The observed distribution of 14C activity shows a weak contribution of the deep 14C-depleted CO2 to the photic zone. Such a distribution of 14C within the water column is unable to explain the aging of sedimentary organic matter and reservoir ages greater than 500 yr. A contribution of production by chemoautotrophic bacteria feeding on 14C-depleted methane at the boundary of the oxic and anoxic zones is a realistic hypothesis. Also, a contribution to sedimentary organic carbon estimated at <15% of the photosynthetic primary production could explain 14C reservoir ages greater than 1300 yr.

Type
Marine Studies
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Aksu, AE, Hiscott, RN, Kaminski, MA, Mudie, PJ, Gillespie, H, Abrajano, T, Yasar, D. 2002a. Last glacial-Holocene paleoceanography of the Black Sea and Marmara Sea: stable isotopic, foraminiferal and coccolith evidence. Marine Geology 190(1–2):119–49.CrossRefGoogle Scholar
Aksu, AE, Hiscott, RN, Mudie, PJ, Rochon, A, Kaminski, MA, Abrajano, T, Yasar, D. 2002b. Persistent Holocene outflow from the Black Sea to the eastern Mediterranean contradicts Noah's Flood hypothesis. GSA Today 12(5):410.Google Scholar
Aksu, AE, Hiscott, RN, Yasar, D, Isler, FI, Marsh, S. 2002c. Seismic stratigraphy of Late Quaternary deposits from the southwestern Black Sea shelf: evidence for non-catastrophic variations in sea-level during the last ≃10000 yr. Marine Geology 190(1–2):6194.CrossRefGoogle Scholar
Bahr, A, Lamy, F, Arz, H, Kuhlmann, H, Wefer, G. 2005. Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Marine Geology 214(4):309–22.CrossRefGoogle Scholar
Bard, E, Arnold, M, Maurice, P, Duplessy, J-C. 1987. Measurements of radiocarbon in the ocean by means of accelerator mass spectrometry: technical aspects. Nuclear Instruments and Methods in Physics Research B 29(1–2):297301.Google Scholar
Bard, E, Arnold, M, Mangerud, J, Paterne, M, Labeyrie, L, Duprat, J, Mélières, M-A, Søstegaard, E, Duplessy, J-C. 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126(4):275–87.CrossRefGoogle Scholar
Calvert, SE, Fontugne, MR. 1987. Stable carbon isotopic evidence for the marine origin of the organic matter in the Holocene Black Sea sapropel. Chemical Geology 66(3–4):315–22.Google Scholar
Calvert, SE, Vogel, JS, Southon, JR. 1987. Carbon accumulation rates and origin of the Holocene sapropel in the Black Sea. Geology 15(10):918–21.2.0.CO;2>CrossRefGoogle Scholar
Chu, PC, Ivanov, LM, Margolina, TM. 2005. Seasonal variability of the Black Sea chlorophyll-a concentration. Journal Marine Systems 56(3–4):243–61.CrossRefGoogle Scholar
Degens, ET, Ross, DA. 1972. Chronology of the Black Sea over the last 25,000 years. Chemical Geology 10:116.Google Scholar
Deuser, WG. 1970. Isotopic evidence for diminishing supply of available carbon during diatom bloom in the Black Sea. Nature 225(5237):1069–71.Google Scholar
Deuser, WG. 1972. Late Pleistocene and Holocene history of the Black Sea as indicated by stable-isotope studies. Journal of Geophysical Research 77(6):1071–7.Google Scholar
Duplessy, J-C. 1972. La géochimie des isotopes stables du carbone dans la mer [PhD dissertation]. Paris: University Paris IV. 196 p.Google Scholar
Durisch-Kaiser, E, Klauser, L, Wehrli, B, Schubert, C. 2005. Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column. Applied and Environmental Microbiology 71(12):8099–106.Google Scholar
Ediger, D, Soydomir, N, Kideys, AE. 2006. Estimation of phytoplankton biomass using HLC pigment analysis in the southwestern Black Sea. Deep-Sea Research II 53(17–19):1911–22.Google Scholar
Fry, B, Jannasch, HW, Molyneaux, SJ, Wirsen, CO, Muramoto, JA, King, S. 1991. Stable isotope studies of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench. Deep-Sea Research 38 (Supplement 2):S1003S1019.Google Scholar
Guichard, F, Carey, S, Arthur, MA, Sigurdsson, H, Arnold, M. 1993. Tephra from the Minoan eruption of Santorini in sediments of the Black Sea. Nature 363(6430):610–2.Google Scholar
Jones, GA, Gagnon, AR. 1994. Radiocarbon chronology of Black Sea sediments. Deep-Sea Research I 41(3):531–57.Google Scholar
Karl, DM, Knauer, GA. 1991. Microbial production and particle flux in the upper 350 m of the Black Sea. Deep-Sea Research 38 (Supplement 2):S921S942.Google Scholar
Kessler, JD, Reeburgh, WS, Southon, J, Seifert, R, Michaelis, W, Tyler, SC. 2006. Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea. Earth and Planetary Science Letters 243(3–4):366–75.Google Scholar
Kwiecien, O, Bahr, A, Arz, H, Lamy, F, Haug, G. 2005. Paleoenvironmental history of the Black Sea during the last ca. 30 kyr. In: Michaelis, W, Wong, HK, Lericolais, G, editors. 2nd ASSEMBLAGE Workshop, Hamburg (G). p 25–6.Google Scholar
Kwiecien, O, Arz, H, Lamy, F, Bahr, A, Wulf, S, Haug, G. 2006. Preliminary results on core MD04 2760 from the southwestern Black Sea. In: European Geosciences Union 2006 (editor). Geophysical Research Abstracts. Vienna: Ost. p 06947.Google Scholar
Kwiecien, O, Arz, HW, Lamy, F, Wulf, S, Bahr, A, Röhl, U, Haug, G. 2008. Estimated reservoir ages of the Black Sea since the last Glacial. Radiocarbon 50(1):99118.Google Scholar
Leboucher, V, Jean-Baptiste, P, Fourré, E, Arnold, M, Fieux, M. 2004. Oceanic radiocarbon and tritium on a transect between Australia and Bali (eastern Indian Ocean). Radiocarbon 46(2):567–81.Google Scholar
Major, CO, Ryan, WBF, Lericolais, G, Hajdas, I. 2002. Constraints on Black Sea outflow to the Sea of Marmara during the last glacial-interglacial transition. Marine Geology 190(1–2):1934.CrossRefGoogle Scholar
Michaelis, W, Seifert, R, Nauhaus, K, Treude, T, Thiel, V, Blumenberg, M, Knittel, K, Gieseke, A, Peterknecht, K, Pape, T, Boetius, A, Amann, R, Jørgensen, BB, Widdel, F, Peckmann, J, Pimenov, NV, Gulin, MB. 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297(5583):1013–5.Google Scholar
Morgan, JA, Quinby, HL, Ducklow, HW. 2006. Bacterial abundance and production in the western Black Sea. Deep-Sea Research II 53(17–19):1945–60.Google Scholar
Murray, JW. 2006. Introduction—Recent US research cruises to the Black Sea. Deep-Sea Research II 53(17–19):1737–9.Google Scholar
Murray, JW, Jannasch, HW, Honjo, S, Anderson, RF, Reeburgh, WS, Top, Z, Friederich, GE, Codispoti, LA, Izdar, E. 1989. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 338(6214):411–3.Google Scholar
Murray, JW, Top, Z, Ozsoy, E. 1991. Hydrographic properties and ventilation of the Black Sea. Deep-Sea Research 38 (Supplement 2):S663S689.Google Scholar
Murray, JW, Codispoti, LA, Friederich, GE. 1995. Oxidation-reduction environments: the suboxic zone in the Black Sea. In: Huang, CP, O'Melia, CR, Morgan, JJ, editors. Aquatic Chemistry: Interfacial and Interspecies Processes. ACS Advances in Chemistry Series. Volume 224. Washington DC: ACS. p 157–76.Google Scholar
Östlund, HG, Dyrssen, D. 1986. Renewal rates of the Black Sea deep water. In: Report on chemistry of the seawater, XXXIII proceedings of the Chemical and Physical Oceanography of the Black Sea. Göteborg.Google Scholar
Ryan, WBF, Pitman, WC III, Major, CO, Shimkus, K, Moskalenko, V, Jones, GA, Dimitrov, P, Gorür, N, Sakinçe, M, Yüce, H. 1997. An abrupt drowning of the Black Sea shelf. Marine Geology 138(1–2):119–26.Google Scholar
Ryan, WBF, Major, CO, Lericolais, G, Goldstein, SL. 2003. Catastrophic flooding of the Black Sea. Annual Review of Earth Planetary Sciences 31(1):525–54.Google Scholar
Siani, G, Paterne, M, Arnold, M, Bard, E, Metivier, B, Tisnerat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42(2):271–80.Google Scholar
Siani, G, Paterne, M, Michel, E, Sulpizio, R, Sbrana, A, Arnold, M, Haddad, G. 2001. Mediterranean Sea surface radiocarbon reservoir age changes since the Last Glacial Maximum. Science 294(5548):1917–20.CrossRefGoogle ScholarPubMed
Sperling, M, Schmiedl, G, Hemleben, Ch, Emeis, KC, Erlenkeuser, H, Grootes, PM. 2003. Black Sea impact on the formation of eastern Mediterranean sapropel S1? Evidence from the Marmara Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 190:921.Google Scholar
Strechie-Sliwinski, C. 2007. Enregistrement sédimentaire des changements environnementaux récents dans la zone Nord-ouest de la Mer Noire [PhD dissertation]. Paris: University Paris Sud. 422 p.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Treude, T. et al. 2007. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Applied Environmental Microbiology 73(7):2271–83.Google Scholar
Yilmaz, A, Coban-Yildiz, Y, Telli-Karakoç, F, Bologa, A. 2006. Surface and mid-water sources of organic carbon by photoautotrophic and chemoautotrophic production in the Black Sea. Deep-Sea Research II 53(17–19):19882004.CrossRefGoogle Scholar