Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T00:44:45.416Z Has data issue: false hasContentIssue false

Overview of the Workshop on Secular Variations in Production Rates of Cosmogenic Nuclides on Earth1

Published online by Cambridge University Press:  18 July 2016

John C. Gosse
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA Geology and Geochemistry Group, EES-1, MS D462
Robert C. Reedy
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA Astrophysics and Radiation Measurements Group, NIS-2, MS D436
Charles D. Harrington
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA Geology and Geochemistry Group, EES-1, MS D462
Jane Poths
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA Chemical Science and Technology, CST-7, MS J514
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Measurements of cosmogenic nuclides made in situ in the Earth's surface are being used to help resolve a wide range of geologic and chronologic questions. Cosmogenic nuclides (3He, 10Be, 14C, 21Ne, 26Al 36C1 are presently used) can reveal rock exposure history information leading to estimates of timing of surface forming events, rates and styles of erosion, and timing and durations of episodes of burial. Depending on the problems being tackled, a significant source of error (±10–25%) for any cosmogenic nuclide method is the present uncertainty in the spatial and temporal variability of the rates of production of these in-situ nuclides.

Type
Research Article
Copyright
Copyright © The American Journal of Science 

References

Anthony, E. Y., McIntosh, W. C., Poths, J., Williams, W. J. W., Whitelaw, M. and Geissman, J. 1994 Geochronology and paleomagnetism of the Quaternary Potrillo volcanic field, Rio Grande Rift, New Mexico: Abstracts of the 8th International Conference on Geochronology, Cosmochronology and Isotope Geology. USGS Circular 1107: 10.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990 Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405410.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R. G., Zindler, A., Mathieu, G. and Arnold, M. 1990 U/Th and 14C ages of corals from Barbados and their use for calibrating the 14C time scale beyond 9000 years BP. Nuclear Instruments and Methods in Physics Research B52: 461468.Google Scholar
Baros, F. and Regnier, S. 1984 Measurement of cross sections for 22Ne, 20–22Ne and 36–42Ar in the spallation of Mg, Al, Si, Ca and Fe: Production ratios of some cosmogenic nuclides in meteorites. Journal de Physique 45: 855861.Google Scholar
Becker, B. 1993 An 11,000-year German Oak and Pine dendrochronology for radiocarbon calibration. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35 (3): 201213.Google Scholar
Beer, J., Andree, M., Oeschger, H., Siegenthaler, U., Bonani, G., Hofmann, H., Morenzoni, E., Nessi, M., Suter, M., Wölfli, W., Finkel, R. and Langway, C. 1984 The Camp Century 10Be record: Implications for long-term variations of the geomagnetic dipole moment. Nuclear Instruments and Methods in Physics Research B5: 380384.CrossRefGoogle Scholar
Beer, J. et al. 1983 Temporal 10Be variations: Proceedings of the 18th International Cosmic Ray Conference, Bangalore 9: 317–320.Google Scholar
Beer, J. 1983 Temporal 10Be variations in ice. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25 (2) 269278.Google Scholar
Beer, J., Siegenthaler, U., Bonani, G., Finkel, R. C., Oeschger, H., Suter, M. and Wölfli, W. 1988 Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 331: 675679.CrossRefGoogle Scholar
Bierman, P. R., Gillespie, A. R. and Caffee, M. W. 1995 Cosmogenic ages for earthquake recurrence intervals and debris flow for deposition, Owens Valley, California. Science 270 (5235): 447450.Google Scholar
Brook, E. J., Brown, E. T., Kurz, M. D., Ackert, R. P., Raisbeck, G. M. and Yiou, F. 1995 Constraints on erosion and uplift rates of Pliocene glacial deposits in the Transantarctic Mountains using in situ-produced 10Be and 26Al. Geology 23: 10631068 Google Scholar
Brook, E. J. and Kurz, M. D. 1993 Using in situ cosmogenic 3He in Antarctic quartz sandstone boulders for surface-exposure chronology. Quaternary Research 39: 110.Google Scholar
Brown, E. T., Bourles, D. L., Colin, F., Raisbeck, G. M., Yiou, F. and Desgarceaux, S. 1995 Evidence for muon-induced in situ production of 10Be in near-surface rocks from the Congo. Geophysical Research Letters 22: 703706.Google Scholar
Brown, E. T., Brook, E. J., Raisbeck, G. M., Yiou, F. and Kurz, M. D. 1992 Effective attenuation lengths of cosmic rays producing 10Be and 26Al in quartz: Implications for exposure age dating. Geophysical Research Letters 19: 369372.Google Scholar
Brown, E. T. et al. 1991 Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al. Geochimica et Cosmochimica Acta 55: 22692283.Google Scholar
Castagnoli, G. and Lal, D. 1980 Solar modulation effects in terrestrial production of Carbon-14. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22 (2): 133158.Google Scholar
Cerling, T. E. 1990 Dating geomorphologic surfaces using cosmogenic 3He. Quaternary Research 33: 148156.Google Scholar
Cerling, T. E. and Craig, H. 1994 Cosmogenic 3He production rates from 39°N to 46°N latitude, western USA and France. Geochimica et Cosmochimica Acta 58: 249255.Google Scholar
Clapp, E. and Bierman, P. 1995 First geomagnetic-based, in situ produced cosmogenic isotope calibration program. Geological Society of America Abstracts with Programs 27: A59.Google Scholar
Clapp, E. and Bierman, P. (ms.) COSMO-CALIBRATE: A program for calibrating cosmogenic exposure ages. Submitted to Geophysical Research Letters. Google Scholar
Clark, D. H., Bierman, P. R. and Larsen, P. 1995 Improving in situ cosmogenic chronometers. Quaternary Research 44: 366376.Google Scholar
Clark, D. H. and Gillespie, A. R., in press, Timing and significance of late-glacial and Holocene glaciation in the Sierra Nevada, California. Quaternary International. Google Scholar
Cui, Y. and Verosub, K. L. 1995 A mineral magnetic study of some pottery samples: Possible implication for sample selection in archaeointensity studies. Physics of the Earth and Planetary Interiors 91: 261271.Google Scholar
Damon, P. E. and Linick, T. W. 1986 Geomagnetic-heliomagnetic modulation of atmospheric radiocarbon production. In Stuiver, M. and Kra, R. S., eds. Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2A): 266278.Google Scholar
Dep, L. 1995 (ms.) Cosmogenic radionuclide production in terrestrial rocks: Accelerator mass spectrometry measurements and Monte Carlo simulations. Ph.D. dissertation, Purdue University.Google Scholar
Dep, L., Elmore, D., Fabryka-Martin, J., Masarik, J. and Reedy, R. C. 1994a Numerical simulation of cosmogenic nuclide production in rocks for various exposure geometries. Abstracts of the 8th International Conference on Geochronology, Cosmochronology and Isotope Geology. USGS Circular 1107: 80.Google Scholar
Dep, L., Elmore, D., Fabryka-Martin, J., Masarik, J. and Reedy, R. C. 1994b Production rate systematics of cosmogenic nuclides in terrestrial rocks using Monte-Carlo methods. Nuclear Instruments and Methods B92: 321325.Google Scholar
Dockhorn, B., Neumaier, S., Hartmann, F. J., Petitjean, C., Faestermann, H. and Nolte, E. 1991 Determination of erosion rates with cosmic ray produced 36Cl. Zeitschrift Physik A341: 117119.Google Scholar
Elsasser, W., Ney, E. P. and Winckler, J. R. 1956 Cosmicray intensity and geomagnetism. Nature 178: 12261227.Google Scholar
Finkel, R. and Suter, M. 1993 AMS in the Earth Sciences: Technique and applications. Advances in Analytical Geochemistry 1: 1114.Google Scholar
Florek, M., Masarik, J., Szarka, I., Nikodemova, D. and Hrabovcova, H. (ms.) Natural neutron fluence and the equivalent dose in localities with different altitudes, radiation protection. Submitted to Radiation Protection.Google Scholar
Foukal, P. and Lean, J. 1990 An empirical model of total solar irridiance variation between 1874 and 1988. Science 247: 556558.Google Scholar
Gosse, J. C., Evenson, E. B., Klein, J., Lawn, B. and Middleton, R. 1995 Precise cosmogenic 10Be measurements in western North America: Support for a global Younger Dryas cooling event. Geology 23: 877880.Google Scholar
Gosse, J. C., Klein, J. and Harrington, C. 1996 Intricacies in calibrating the cosmic-ray exposure time scale. American Association for the Advancement of Science Annual Meeting, Baltimore Abstracts and Program, 8–13 February: A38.Google Scholar
Graf, T., Kim, J. S., Marti, K. and Niedermann, S. 1995 Cosmic-Ray-Produced Neon at the Surface of the Earth. In Noble Gas Geochemistry and Cosmochemistry. Tokyo, Terra Scientific Publishing Company: 115123.Google Scholar
Graf, T., Kohl, C. P., Marti, K. and Nishiizumi, K. 1991 Cosmic-ray produced neon in Antarctic rocks. Geophysical Research Letters 18: 203206.Google Scholar
Gubbins, D. and Kelly, P. 1993 Persistent patterns in the geomagnetic field over the past 2.5 Myr. Nature 365: 829832.Google Scholar
Gubbins, D. and Kelly, P. 1995 On the analysis of paleomagnetic secular variation. Journal of Geophysical Research 100: 1495514964.Google Scholar
Hampel, W., Takagi, J., Sakamoto, K. and Tanaka, S. 1975 Measurement of muon-induced 26Al in terrestrial silicate rock. Journal of Geophysical Research 80: 37573760.Google Scholar
Hanna, R. L. and Verosub, K. L. 1989 A review of lacustrine paleomagnetic records from western North America: 0–40,000 years BP. Physics of the Earth and Planetary Interiors 56: 7695.Google Scholar
Hashizume, K. and Sugiura, N. 1992 Measurement of cosmogenic nitrogen using a static mass-spectrometry system and its implication. Geochimica et Cosmochimica Acta 56: 16251631.Google Scholar
Heinrich, W. and Spill, A. 1979 Geomagnetic shielding of cosmic rays for different satellite orbits. Journal of Geophysical Research 84: 4401.Google Scholar
Hollerbach, R. and Jones, C. A. 1993 Influence of the Earth’s inner core on geomagnetic fluctuations and reversals. Nature 365: 541543.CrossRefGoogle Scholar
Hudson, G. B., Caffee, M. W., Beiringer, J., Ruiz, B., Kohl, C. P. and Nishiizumi, K. 1991 Production rate and retention properties of cosmogenic 3He and 21Ne in quartz. EOS 72: 575.Google Scholar
Imamura, M., Kobayashi, K., Nagai, H., Sugita, H., Nakamura, T., Shibata, S. and Uwamino, Y. 1991 Application of Accelerator Mass Spectrometry at the Tandem Facility of University of Tokyo—Measurement of neutron- and photon-induced reaction cross sections. Proceedings of the 2nd International Symposium on Advanced Nuclear Energy Research—Evolution by Accelerators, v. Mito, Japan 1990: 602607 (Note: error exists in the 27Al(n,2n)26Al cross section data in this paper; all data must be divided by 1.6). Google Scholar
Imamura, M., Nagai, H., Takabatake, M., Shibata, S., Kobayashi, K., Yoshida, K., Ohashi, H., Uwamino, Y. and Nakamura, T. 1990 Measurements of production cross sections of 14C and 26Al with high energy neutrons up to En=38 MeV by Accelerator Mass Spectrometry. Nuclear Instruments and Methods in Physics Research B52: 595600.Google Scholar
Ivy-Ochs, S., Schluchter, C., Kubik, P. W. and Beer, J. 1995 Surface exposure dating of a Younger Dryas moraine in the Swiss Alps using 10Be and 26Al. Paul Scherrer Institut, ETH Annual Report 1993/1994 Ion Beam Physics: 47.Google Scholar
Ivy-Ochs, S., Schlüchter, C., Kubik, P. W., Bruno, L., Masarik, J. and Beer, J. (ms.) The usefulness of pyroxene for 10Be exposure dating: A comparison of sequential leaching of quartz and pyroxene. Submitted to Earth and Planetary Science Letters.Google Scholar
Jull, A. J. T., Donahue, D. J., Linick, T. W. and Wilson, G. C. 1989 Spallogenic 14C in high-altitude rocks and Antarctic meteorites. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31 (3): 719724.Google Scholar
Jull, A. J. T., Lal, D., Donahue, D. J., Mayewski, P., Lorius, C., Raynaud, D. and Petit, J. R. 1994 Measurements of cosmic-ray-produced 14C in firn and ice from Antartica. Nuclear Instruments and Methods B92: 326330.Google Scholar
Jull, A. J. T., Lifton, N., Phillips, W. M. and Quade, J. 1994 Studies of the production rate of cosmic-ray produced 14C in rock surfaces. Nuclear Instruments and Methods in Physics Research B92: 308310.Google Scholar
Jull, A. J. T., Wilson, A. E., Burr, G. S., Toolin, L. J. and Donahue, D. J. 1992 Measurements of cosmogenic 14C produced by spallation in high-altitude rocks. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34 (3): 737744.Google Scholar
King, J. W., Banerjee, S. K. and Marvin, J. 1983 A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: Application to paleointensity for the last 4000 years. Journal of Geophysical Research 88: 59115921.Google Scholar
Kromer, B. and Becker, B. 1990 Tree-ring 14C calibration at 10,000 BP. In Bard, E. and Broecker, W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies, NATO ASI Series I, Vol. 2. Berlin, Springer-Verlag: 311.Google Scholar
Kurz, M. 1986 In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochimica et Cosmochimica Acta 50: 28552862.Google Scholar
Kurz, M., Colodner, D., Trull, T. W. and Sampson, D. E. 1987 Exposure age dating with cosmogenic 3He: Influence of the Earth’s magnetic field: EOS 68: 1286.Google Scholar
Kurz, M. D. 1986 Cosmogenic helium in a terrestrial igneous rock. Nature 320: 435439.Google Scholar
Kurz, M. D., Colodner, D., Trull, T. W., Moore, R. B. and O’Brien, K. 1990 Cosmic ray exposure dating with in situ produced cosmogenic 3He: Results from young Hawaiian lava flows. Earth and Planetary Sciences 97: 177189.Google Scholar
Lal, D. 1987 Cosmogenic nuclides produced in situ in terrestrial solids. Nuclear Instruments and Methods in Physics Research B29: 238245.Google Scholar
Lal, D. 1987 Production of 3He in terrestrial rocks. Chemical Geology 66: 8998.Google Scholar
Lal, D. 1991 Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion rates. Earth and Planetary Science Letters 104: 424439.Google Scholar
Lal, D., Arnold, J. R. and Nishiizumi, K. 1985 Geophysical records of a tree: New application for studying geomagnetic field and solar activity changes during the past 104 years. Meteoritics 20: 403414.Google Scholar
Lal, D. and Jull, A. J. T. 1990 On determination of ice accumulation rates in the past 40,000 years using in-situ cosmogenic 14C. Geophysical Research Letters 17: 13031306.Google Scholar
Lal, D. and Jull, A. J. T. 1992 Cosmogenic nuclides in ice sheets. Radiocarbon 34 (2): 227233.CrossRefGoogle Scholar
Lal, D., Jull, A. J. T., Burtner, D. and Nishiizumi, K. 1990 Polar ice ablation rates measured using in-situ cosmogenic 14C. Nature 346: 350352.Google Scholar
Lal, D., Nishiizumi, K., Reedy, R. C., Suter, M. and Wölfli, W. 1987 An accurate measurement of the 10B(n,p)10Be cross section at thermal energies. Nuclear Physics A468: 189192.Google Scholar
Lal, D. and Peters, B. 1967 Cosmic-ray produced radio-activity on the Earth. Handbook of Physics, Volume 46/2. Berlin, Springer-Verlag: 551612.Google Scholar
Lao, Y., Anderson, R. F., Broecker, W. S., Trumbore, S. E., Hofmann, H. F. and Wölfli, W., 1992 Increased production of cosmogenic 10Be during the Last Glacial Maximum. Nature 357: 576578.Google Scholar
Larsen, P. 1995 (ms.) In situ production rates of cosmogenic 10Be and 26Al over the past 21.5 ky from the terminal moraine of the Laurentide ice sheet, north central New Jersey. Master’s thesis, University of Vermont.Google Scholar
Larsen, P. L., Bierman, P. R. and Caffee, M. 1995 Preliminary in situ production rates of cosmogenic 10Be and 26Al over the past 21. 5 ky from the terminal moraine of the Laurentide ice sheet, north-central New Jersey. Geological Society of America Abstracts with Programs 27: A59.Google Scholar
Larsen, P. L., Bierman, P. R., Stone, B. D. and Caffee, M., (ms.) In situ production rates of cosmogenic 10Be and 26Al over the past 21.5 ky from the terminal moraine of the Laurentide ice sheet, north-central New Jersey. Submitted to Geological Society of America Bulletin.Google Scholar
Laughlin, A. W., Poths, J., Healey, H. A., Reneau, S. and WoldeGabriel, G. 1994 Dating of Quaternary basalts using cosmogenic 3He and 14C methods with implications for excess 40Ar: Geology 22: 135–138.Google Scholar
Lin, J.-L., Verosub, K. L. and Roberts, A. P. 1994 Decay of the virtual dipole moment during polarity transitions and geomagnetic excursions. Geophysical Research Letters 21: 525528.Google Scholar
Liu, B., Phillips, F. M., Fabryka-Martin, J. T., Fowler, M. M. and Stone, W. D. 1994 Cosmogenic 36Cl accumulation in unstable landforms I: Effects of the thermal neutron distribution. Water Resources Research 30: 31153125.Google Scholar
Mankinen, E. A. and Champion, D. E. 1993 Latest Pleistocene and Holocene geomagnetic paleointensity on Hawaii. Science 262: 412416.Google Scholar
Marti, K. and Craig, H. 1987 Cosmic-ray produced neon and helium in the summit lavas of Maui. Nature 325: 335337.Google Scholar
Masarik, J. and Reedy, R. C. 1994a Effects of bulk composition on nuclide production processes in meteorites. Geochimica et Cosmochimica Acta 58: 53075317.Google Scholar
Masarik, J. and Reedy, R. C. 1994b Simulation of cosmogenic nuclide production in terrestrial rocks. In Abstracts of the 8th International Conference on Geochronology, Cosmochronology and Isotope Geology. USGS Circular 1107: 204.Google Scholar
Masarik, J. and Reedy, R. C. 1995 Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth and Planetary Science Letters 136: 381396.Google Scholar
Mazaud, A., Laj, C., Bard, E., Arnold, M. and Tric, E. 1991 Geomagnetic field control of 14C production over the last 80 ka: Implications for the radiocarbon time scale. Geophysical Research Letters 18: 18851888.Google Scholar
McElhinny, M. W. and Senanayake, W. E. 1982 Variations in the geomagnetic dipole 1: The past 50,000 years. Journal of Geomagnetism and Geoelectricity 34: 3951.Google Scholar
McHargue, L. R. and Damon, P. E. 1991 The global beryllium 10 cycle. Reviews of Geophysics 29: 141158.Google Scholar
Merrill, R. T. and McElhinny, M. W. 1983 The Earth’s Magnetic Field, its History, Origin and Planetary Perspective. 401 p.Google Scholar
Merrill, R. T. and McFadden, P. L. 1994 Geomagnetic field stability: Reversal events and excursions. Earth and Planetary Science Letters 121: 5769.Google Scholar
Meynadier, L., Valet, J.-P., Weeks, R., Shackleton, N. J. and Hagee, V. L. 1992 Relative geomagnetic intensity of the field during the last 140 ka. Earth and Planetary Science Letters 114: 3957.Google Scholar
Middleton, R., Brown, L., Dezfouly-Arjomandy, B. and Klein, J. 1993 On 10Be standards and the half life of 10Be. Nuclear Instruments and Methods in Physics Research B82: 399403.CrossRefGoogle Scholar
Moniot, R. K., Kruse, T. H., Tuniz, C., Savin, W., Hall, G. S., Milazzo, T., Pal, D. and Herzog, G. F. 1983 The 21Ne production rate in stony meteorites estimated from 10Be and other radionuclides. Geochimica et Cosmochimica Acta 47: 18871895.Google Scholar
Nakamura, T., Sugita, H., Imamura, M., Uwamino, Y., Nagai, H. and Kobayashi, K. 1991 Measurement of the long-lived 26Al production cross section in the 27Al(n,2n) reaction. Physical Review C43: 18311837.Google Scholar
Negrini, R. M., Erbes, D. B., Roberts, A. P., Verosub, K. L., Sarna-Wojcicki, A. M. and Meyer, C. 1994 Repeating waveforms initiated by a 150 ka geomagnetic excursion in western North America: Implications for field behavior during polarity transitions and subsequent secular variation. Journal of Geophysical Research 99: 2410524119.Google Scholar
Negrini, R. M., Verosub, K. L. and Davis, J. O. 1987 Long-term non-geocentric axial dipole directions and a geomagnetic excursion from the Middle Pleistocene sediments of the Humboldt River Canyon, Pershing County, Nevada, U.S.A. Journal of Geophysical Research 92: 1061710628.Google Scholar
Negrini, R. M., Verosub, K. L. and Davis, J. O. 1988 The middle to late Pleistocene geomagnetic field recorded in fine-grained sediments from Summer Lake, Oregon and Double Hot Springs, Nevada, U.S.A. Earth and Planetary Science Letters 87: 173192.Google Scholar
Niedermann, S., Graf, T., Kim, J. S., Kohl, C. P., Marti, K. and Nishiizumi, K. 1994 Cosmic-ray-produced 21Ne in terrestrial quartz: The neon inventory of Sierra Nevada quartz separates. Earth and Planetary Sciences 125: 341355.Google Scholar
Niedermann, S., Graf, T. and Marti, K. 1993 Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Earth and Planetary Science Letters 118: 6573.Google Scholar
Nishiizumi, K., Elmore, D., Ma, X. Z. and Arnold, J. R. 1984 10Be and 36Cl depth profiles in an Apollo 15 drill core. Earth and Planetary Science Letters 70: 157163.Google Scholar
Nishiizumi, K., Finkel, R. C., Klein, J. and Kohl, C. P. (ms.) Cosmogenic production of 7Be and 10Be in water targets. Submitted to Journal of Geophysical Research.Google Scholar
Nishiizumi, K., Klein, J., Middleton, R. and Arnold, J. R. 1984 26Al depth profile in Apollo 15 drill core. Earth and Planetary Science Letters 70: 164168.Google Scholar
Nishiizumi, K., Klein, J., Middleton, R. and Craig, H. 1990 Cosmogenic 10Be, 26Al and 3He in olivine from Maui lavas. Earth and Planetary Science Letters 98: 263266.Google Scholar
Nishiizumi, K., Kohl, C. P., Arnold, J. R., Klein, J., Fink, D. and Middleton, R. 1991a Cosmic-ray produced 10Be and 26Al in Antarctic rocks: Exposure and erosion history. Earth and Planetary Science Letters 104: 440454.Google Scholar
Nishiizumi, K., Kohl, C. P., Shoemaker, E. M., Arnold, J.R., Klein, J., Fink, D. and Middleton, R. 1991b In situ 10Be-26Al exposure ages at Meteor Crater, Arizona. Geochimica et Cosmochimica Acta 55: 26992703.Google Scholar
Nishiizumi, K., Lal, D., Klein, J., Middleton, R. and Arnold, J. R. 1986 Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates. Nature 319: 134135.Google Scholar
Nishiizumi, K., Murty, S. V. S., Marti, K. and Arnold, J. R. 1985 When did the average cosmic ray flux increase? 19th International Cosmic Ray Conference, La Jolla. SH 7.1–4: 379381.Google Scholar
Nishiizumi, K., Reedy, R. C. and Arnold, J. R. 1990 Depth profiles of radionuclide production in solids with 2π geometry. Workshop on Cosmogenic Nuclide Production Rates, Lunar and Planetary Institute Technical Report 90–05: 9697.Google Scholar
Nishiizumi, K., Regnier, S. and Marti, K. 1980 Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past. Earth and Planetary Science Letters 50: 156170.Google Scholar
Nishiizumi, K., Winterer, E. L., Kohl, C. P., Lal, D., Arnold, J. R., Klein, J. and Middleton, R. 1989 Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. Journal of Geophysical Research 94: 17, 90717915.Google Scholar
O’Brien, K., Friedberg, W., Sauer, H. and Smart, D. (Plenary lecture) Atmospheric cosmic rays and solar energetic particles at aircraft altitudes. International Symposium on the Natural Radiation Environment, Montréal, Canada, 9 June 1995.Google Scholar
Ohno, M. and Hamano, Y. 1993 Geomagnetic poles over the last 10,000 years. Geophysical Research Letters 19: 17151718.Google Scholar
Olinger, C. T., Poths, J., Nishiizumi, K., Kohl, C. P., Finkel, R. C., Caffee, M. W., Southon, J. and Proctor, I. 1992 Attenuation lengths of cosmogenic production of 26Al, 10Be and 21Ne in Bandelier Tuff. EOS 73: 185. Phillips, F. M., Zreda, M. G., Elmore, D. and Sharma, P. (ms.) A reevaluation of cosmogenic 36Cl production rates in terrestrial rocks. Submitted to Geophysical Research Letters.Google Scholar
Phillips, F. M., Zreda, M. G., Smith, S. S., Elmore, D., Kubik, P. W., Dorn, R. I. and Roddy, D. J. 1991 Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic Cl-36 in rock varnish. Geochimica et Cosmochimica Acta 55: 26952698.Google Scholar
Poreda, R. J. and Cerling, T. E. 1992 Cosmogenic neon in recent lavas from the western United States. Geophysical Research Letters 19: 18631866.Google Scholar
Reedy, R. C., Arnold, J. R. and Lal, D. 1983 Cosmic ray record in solar system matter. Annual Review of Nuclear and Particle Science 35: 505537.Google Scholar
Reedy, R. C., Lal, D., Laffoon, M., Nishiizumi, K., Arnold, J. R., Elmore, D., Kubik, P., Klein, J., Middleton, R. and Englert, P. 1988 Simulations of the cosmic-ray production of radionuclides in terrestrial rocks. Progress at LAMPF 1987, Los Alamos National Laboratory Report LA-11339: 148154.Google Scholar
Reedy, R. C., Nishiizumi, K. and Arnold, J. R. 1990 Cross sections for galactic-cosmic-ray-produced nuclides. Workshop on Cosmogenic Nuclide Production Rates. LPI Technical Report 90–05: 102103.Google Scholar
Reedy, R. C., Nishiizumi, K., Klein, J., Davis, R., Middleton, R., Lal, D., Arnold, J. R., Kubik, P., Jull, A. T. J., Englert, P. A. J. and Elmore, D. 1994 Production of cosmogenic nuclides by muons. Abstracts of the 8th International Conference on Geochronology, Cosmochronology and Isotope Geology. USGS Circular 1107: 262.Google Scholar
Reedy, R. C., Nishiizumi, K., Lal, D., Arnold, J. R., Englert, P. A. J., Klein, J., Middleton, R., Jull, A. J. T. and Donahue, D. J. 1994 Simulations of terrestrial in-situ cosmogenic-nuclide production. Nuclear Instruments and Methods in Physics Research B92: 297300.Google Scholar
Reedy, R. C., Tuniz, C. and Fink, D. 1994 Report on the workshop on production rates of terrestrial in-situ-produced cosmogenic nuclides. Nuclear Instruments and Methods B92: 335339.Google Scholar
Roberts, A. P., Verosub, K. L. and Negrini, R. M. 1994 Middle/Late Pleistocene relative paleointensity of the geomagnetic field from lacustrine sediments, Lake Chewaucan, western United States. Geophysical Journal International 118: 101110.Google Scholar
Sarda, P., Staudacher, T., Allegre, C. J. and Lecomte, A. 1993 Cosmogenic neon and helium at Réunion: Measurement of erosion rate. Earth and Planetary Science Letters 119: 405417.Google Scholar
Shea, D. and Smart, F. 1983 A world grid of calculated cosmic ray vertical cutoff rigidities of 1980. 18th International Cosmic Ray Conference, Conference Papers 3: 415.Google Scholar
Shibata, S., Imamura, M., Nagai, H., Kobayashi, K., Sakamoto, K., Furukawa, M. and Fujiwara, I. 1993 Measurements of 10Be and 26Al production cross sections with 12 GeV protons by accelerator mass spectrometry. Physical Review C 48: 26172624.Google Scholar
Shibata, S., Shibata, T., Imamura, M., Uwamino, Y., Ohkubo, T., Satoh, S., Morikawa, N. and Nogawa, N. (ms.) Measurement of production cross section of tritium from oxygen using semimono-energetic p-Be and p-Li neutrons. Submitted to Radiochimica.Google Scholar
Sisterson, J. M., Jull, A. J. T., Beverding, A., Koehler, A. M., Castaneda, C., Vincent, J., Donahue, D. J., Englert, P. A. J., Gans, C., Young, J. and Reedy, R.C. 1994 Proton production cross sections from 14C from silicon and oxygen: Implications for cosmic ray studies. Nuclear Instruments and Methods in Physics Research B92: 510512.Google Scholar
Staudacher, T. and Allégre, C. J. 1993 Ages of the second caldera of Piton de la Fournaise volcano (Réunion) determined by cosmic ray produced 3He and 21Ne. Earth and Planetary Science Letters 119: 395404.Google Scholar
Sternberg, R. S. 1989 Secular variation of archaeomagnetic direction in the American Southwest. Journal of Geophysical Research 94: 527546.Google Scholar
Sternberg, R. S. 1992 Radiocarbon fluctuations and the geomagnetic field. In Taylor, R. E., Long, A. and Kra, R., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer Verlag: 93116.Google Scholar
Sternberg, R. S. and Damon, P. E. 1992 Implications of dipole moment secular variation from 50–10 ka for the radiocarbon record. Radiocarbon 34 (2): 189198.Google Scholar
Sternberg, R. S., Deaver, W. L., Kuter, E. A. and Kiley, A. L. (ms.) A relational North American archaeomagnetic database. Submitted to Journal of Geomagnetism and Geoelectricity.Google Scholar
Strack, E., Heisinger, B., Dockhorn, B., Hartmann, F. J., Korschinek, G., Nolte, E., Morteani, G., Petitjean, C. and Neumaier, S. 1994 Determination of erosion rates with cosmogenic 26Al. Nuclear Instruments and Methods B92: 317320.Google Scholar
Stuiver, M., Braziunas, T. F., Becker, B. and Kromer, B. 1991 Climatic, solar, oceanic and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35: 124.Google Scholar
Stuiver, M., Grootes, P. M. and Braziunas, T. F. 1995 The GISP2 18O climate record of the past 16,500 years and the role of the Sun, ocean and volcanoes. Quaternary Research 44: 341354.Google Scholar
Stuiver, M. and Reimer, P. J. 1993, Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35 (1): 215230.Google Scholar
Swanson, T. W., Caffee, M., Finkel, R., Harris, L., Southon, J., Zreda, M. and Phillips, F. M. 1993 Establishment of new production parameters for chlorine-36 dating based on the deglaciation history of Whidbey Island, Washington. GSA Abstracts with Programs, Annual Meeting, Boston 25: A-61.Google Scholar
Swanson, T. W., Sharma, P., Phillis, F. M. and Zreda, M. 1992 Determination of Chlorine-36 production rates from the deglaciation history of Whidbey Island, WA. Symposium on Accelerator Mass Spectrometry: Applications of Rare Isotopes as Tracers in Science and Technology, American Chemical Society, Division of Nuclear Chemistry and Technology, San Francisco.Google Scholar
Swanson, T. W., Zreda, M., Phillips, F. M., Caffee, M., Finkel, R. and Southon, J., in press, Determination of 36Cl production rates from the deglaciation history of Whidbey and Fidalgo Islands, Washington. Quaternary Research. Google Scholar
Tauxe, L. 1993 Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice. Reviews of Geophysics 31: 319354.Google Scholar
Tric, E., Valet, J.-P., Tucholka, P., Paterae, M., Labeyrie, L., Guichard, F., Tauxe, L. and Fontugne, M. 1992 Paleointensity of the geomagnetic field during the last 80,000 years. Journal of Geophysical Research 97: 93379351.Google Scholar
Trull, T. W., Brown, E. T., Marty, B., Raisbeck, G. M. and Yiou, F. 1995 Accumulation of cosmogenic 10Be and 3He in quartz from Pleistocene beach terraces in Death Valley: Implications for cosmic-ray exposure dating of young surfaces in hot climates. Chemical Geology 119: 191207.Google Scholar
Trull, T. W., Kurz, M. D. and Jenkins, W. J. 1991 Diffusion of cosmogenic 3He in olivine and quartz: Implications for surface exposure dating. Earth and Planetary Science Letters 103: 241256.Google Scholar
Valet, J.-P. and Meynadier, L. 1993 Geomagnetic field intensity and reversals during the past four million years. Nature 366: 234238.Google Scholar
Verosub, K. L. 1988 Geomagnetic secular variation and the dating of Quaternary sediments. In Easterbrook, D., ed. Dating Quaternary Sediments. Geological Society of America Special Paper 227: 123138.Google Scholar
Verosub, K. L. 1989 Detrital remanent magnetism. In James, D.E., ed., The Encyclopedia of Solid Earth Physics. Reinhold, New York, Van Nostrand: 215218.Google Scholar
Verosub, K. L. in press, Paleomagnetic dating in Quaternary Geochronology: Applications in Quaternary Geology and Paleoseismicity. In Lettis, W., Noller, J. and Sower, J., eds., Geological Society of America Special Paper. Verosub, K. L. and Banerjee, S. K. 1977 Geomagnetic excursions and their paleomagnetic record. Reviews of Geophysics and Space Physics 15: 145155.Google Scholar
Verosub, K. L., Mehringer, P. J. J. and Waterstraat, P. 1986 Holocene secular variation in western North America: Paleomagnetic record from Fish Lake, Harney Co., Oregon. Journal of Geophysical Research 91: 36093623.Google Scholar
Wohlfarth, B., Björck, S., Possnert, G. and Brunnberg, L. 1995 A comparison between radiocarbon dated Late Weichselian calendar-year chronologies. Journal of Coastal Research Special Issue. Google Scholar
Yamashita, M., Stephens, L. D. and Patterson, H. W. 1966 Cosmic-ray-produced neutrons at ground level: Neutron production rate and flux distribution. Journal of Geophysical Research 71: 38173834.Google Scholar
Zreda, M. G. 1994 Development and calibration of the cosmogenic 36Cl surface exposure dating method and its application to late Quaternary glaciations. Ph.D. thesis, New Mexico Institute of Mining and Technology, Socorro.Google Scholar
Zreda, M. G., Phillips, F. M., Elmore, D., Kubik, P. W., Sharma, P. and Dorn, R. I. 1991 Cosmogenic chlorine-36 production rates in terrestrial rocks. Earth and Planetary Science Letters 105: 94109.Google Scholar