Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T00:44:52.507Z Has data issue: false hasContentIssue false

MICADAS: Routine and High-Precision Radiocarbon Dating

Published online by Cambridge University Press:  18 July 2016

L Wacker*
Affiliation:
Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland
G Bonani
Affiliation:
Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland
M Friedrich
Affiliation:
Heidelberg Academy of Sciences, 69120 Heidelberg, Germany Institute of Botany, University of Hohenheim, 70593 Stuttgart, Germany
I Hajdas
Affiliation:
Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland
B Kromer
Affiliation:
Heidelberg Academy of Sciences, 69120 Heidelberg, Germany Institute of Botany, University of Hohenheim, 70593 Stuttgart, Germany
M Němec
Affiliation:
Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
M Ruff
Affiliation:
Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland
M Suter
Affiliation:
Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland
H-A Synal
Affiliation:
Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland
C Vockenhuber
Affiliation:
Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The prototype mini carbon dating system (MICADAS) at ETH Zurich has been in routine operation for almost 2 yr. Because of its simple and compact layout, setting up a radiocarbon measurement is fast and the system runs very reliably over days or even weeks without retuning. The stability of the instrument is responsible for the good performance in highest-precision measurements where results of single samples can be reproduced within less than 2‰. The measurements are described and the performance of MICADAS is demonstrated on measured data.

Type
Accelerator Mass Spectrometry
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Bonani, G, Beer, J, Hofmann, H, Synal, H-A, Suter, M, Wolfli, W, Pfleiderer, C, Kromer, B, Junghans, C, Münnich, KO. 1987. Fractionation, precision and accuracy in 14C and 13C measurements. Nuclear Instruments and Methods in Physics Research B 29(1–2):8790.Google Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Kuppers, M. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):1111–22.CrossRefGoogle Scholar
Graven, HD, Guilderson, TP, Keeling, RF. 2007. Methods for high-precision 14C AMS measurement of atmospheric CO2 at LLNL. Radiocarbon 49(2):349–56.Google Scholar
Hajdas, I, Bonani, G, Thut, J, Leone, G, Pfenninger, R, Maden, C. 2004. A report on sample preparation at the ETH/PSI AMS facility in Zurich. Nuclear Instruments and Methods in Physics Research B 223–224:267–71.Google Scholar
Hogg, AG, McCormac, FG, Higham, TFG, Reimer, PJ, Baillie, MGL, Palmer, JG. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon 44(3):633640.Google Scholar
Kromer, B, Münnich, K-O. 1992. CO2 gas proportional counting in radiocarbon dating – review and perspective. In: Taylor, RE, Long, A, Kra, RS, editors. Radiocarbon after Four Decades. New York: Springer-Verlag. p 184–97.Google Scholar
Meijer, HAJ, Pertuisot, MH, van der Plicht, J. 2006. High-accuracy 14C measurements for atmospheric CO2 samples by AMS. Radiocarbon 48(3):355–72.CrossRefGoogle Scholar
Němec, N, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(2–3):1358–70.Google Scholar
Pearson, GW, Stuiver, M. 1986. High-precision calibration of the radiocarbon time scale, 500–2500 BC. Radiocarbon 28(2B):839–62.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Ruff, M, Wacker, L, Gäggeler, HW, Suter, M, Synal, H-A, Szidat, S. 2007. A gas ion source for radiocarbon measurements at 200 kV. Radiocarbon 49(2):307–14.CrossRefGoogle Scholar
Ruff, M, Gäggeler, HW, Suter, M, Synal, H-A, Szidat, S, Wacker, L. 2010. Gaseous radiocarbon measurements of small samples. Nuclear Instruments and Methods in Physics Research B 268(7–8):790–4.Google Scholar
Schulze-König, T, Dueker, SR, Giacomo, J, Suter, M, Vogel, JS, Synal, H-A. 2010. BioMICADAS: compact next generation AMS system for pharmaceutical science. Nuclear Instruments and Methods in Physics Research B 268(7–8):891–4.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3(4):289305.Google Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.CrossRefGoogle Scholar
Suter, M, Balzer, R, Bonani, G, Hofmann, H, Morenzoni, E, Nessi, M, Wölfli, W, Andree, M, Beer, J, Oeschger, H. 1984a. Precision measurements of 14C in AMS—some results and prospects. Nuclear Instruments and Methods in Physics Research B 5(2):117–22.Google Scholar
Suter, M, Balzer, R, Bonani, G, Wölfli, W. 1984b. A fast beam pulsing system for isotope ratio measurements. Nuclear Instruments and Methods in Physics Research B 5(2):242–6.CrossRefGoogle Scholar
Suter, M, Dobeli, M, Grajcar, M, Muller, A, Stocker, M, Sun, GY, Synal, H-A, Wacker, L. 2007. Advances in particle identification in AMS at low energies. Nuclear Instruments and Methods in Physics Research B 259(1):165–72.Google Scholar
Synal, H-A, Jacob, S, Suter, M. 2000. The PSI/ETH small radiocarbon dating system. Nuclear Instruments and Methods in Physics Research B 172(1–4):17.CrossRefGoogle Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.CrossRefGoogle Scholar
Unkel, I. 2006. AMS-14C-Analysen zur Rekonstruktion der Landschafts- und Kulturgeschichte in der Region Palpa (S-Peru) [PhD thesis]. University of Heidelberg. www.ub.uni-heidelberg.de/archiv/6311. In German.Google Scholar
Wacker, L, Christl, M, Synal, H-A. 2010a. Bats: a new powerful tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976–9.Google Scholar
Wacker, L, Němec, M, Bourquin, J. 2010b. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931–4.Google Scholar