Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-06T17:42:06.897Z Has data issue: false hasContentIssue false

The Impact of Holocene Climate on the Development of Prehistoric Societies in Southern Siberia

Published online by Cambridge University Press:  18 July 2016

Marianna Kulkova*
Affiliation:
Department of Geology and Geoecology, Radiocarbon Lab, State Herzen Pedagogical University, St. Petersburg, Russia.
Sergey Krasnienko
Affiliation:
Institute for the History of Material Culture Russian Academy of Science, St. Petersburg, Russia.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Geochemical data of 10Be, 14C, δ18O obtained from natural archives (tree rings, ice sheets, varves, corals) indicates that the climate during the Holocene was not stable. The cosmogenic isotope fluctuations are bound by the periodicity on solar activity and climatic changes. The sharpest and most abrupt climatic deteriorations are registered in the Early and Middle Holocene at 8200, 5800, 5400, 4300, and 2800 cal BP. These events are characterized by cold conditions. The impact of climate on human communities in steppe depressions in southern Siberia (Nazarovo, Minusinsk, and Turano-Uyuk) was noticeable. The differences of local landscape-climatic conditions in these depressions were connected with global climatic changes to determine the processes of occupation, development, and migrations of ancient societies during the Neolithic, Bronze Age, and Iron Age. The chronology of archaeological cultures was also correlated with the local and global climatic changes during the Early and Middle Holocene in southern Siberia. Here, we generalize the literature data about Holocene climatic changes and archaeological cultures in the southern Siberia region.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Alekseev, AYu, Bokovenko, NA, Boltrik, Y, Chugunov, KV, Cook, G, Dergachev, VA, Kovalyukh, N, Possnert, G, van der Plicht, J, Scott, EM, Sementsov, AA, Skripkin, V, Vasiliev, S, Zaitseva, GI. 2001. A chronology of the Scythian antiquities of Eurasia based on new archaeological and 14C data. Radiocarbon 43(2B):1085–107.CrossRefGoogle Scholar
Alekseev, AYu, Bokovenko, NA, Vasiliev, SS, Dergachev, VA, Zaitseva, GI, Kovalukh, NN, Cook, G, van der Plicht, J, Possnert, G, Sementsov, AA, Scott, EM, Chugunov, KV. 2005. Evrasia v Skifsky Period (Radiouglerodnaya i Arkheologicheskaya Khronologiya) [Eurasia in Scythian Period (Radiocarbon and Archaeological Chronology)]. St.Petersburg: Teza Publishers. 290 p.Google Scholar
An, C-B, Fenga, Z-D, Barton, L. 2006. Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China. Quaternary Science Reviews 25(3–4):351–61.Google Scholar
Bard, E, Frank, M. 2006. Climate change and solar variability: What's new under the sun? Earth and Planetary Science Letters 248(1–2):114.CrossRefGoogle Scholar
Bezrukova, EV, Belov, AV, Letunova, PP, Abzaeva, AA, Kulagina, NV, Fisher, EE, Orlova, LA, Sheifer, EV, Voronin, VI. 2008. Peat biostratigraphy and Holocene climate in the northwestern mountain periphery of Lake Baikal. Russian Geology and Geophysics 49:413–21.Google Scholar
Bokovenko, NA. 1997. Noviy tip pogrebalnih komplexov karasukskoy kulturi. [The new type of barrow complexes of Karasuk culture]. In: Masson, VM, editor. Novye Issledovaniya Arkheologov Rossii i SNG: Materiali Plenuma IIMK RAN 28-30 Aprelia 1997 g. St. Petersburg: Peterburgkomstat Publishers. p 2931.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.Google Scholar
Brooks, N. 2006. Cultural responses to aridity in the Middle Holocene and increased social complexity. Quaternary International 151(1):2949.Google Scholar
Bush, A. 2005. CO2/H2O and orbitally driven climate variability over Central Asia through the Holocene. Quaternary International 136:1523.Google Scholar
Chen, F-H, Cheng, B, Zhao, Y, Zhu, Y, Madsen, DB. 2006. Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. The Holocene 16(5):675–84.CrossRefGoogle Scholar
Chen, J, An, Z, Head, J. 1999. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research 51(3):215–9.Google Scholar
Chugunov, K, Nagler, A, Parzinger, H. 2001. The Golden Grave from Arzhan. Minerva 13(1):3942.Google Scholar
Chugunov, KV, Parzinger, H, Nagler, A. 2006. Der Goldschatz von Arzan. Fin Furstgrab der Skythenzeit in der sudsibirischen Steppe. Munich: Schirmer. 78 p.Google Scholar
Chugunov, K, Parzinger, H, Nagler, A. 2007. Der Furstenkurgan Arzan 2. In: Parzinger, H, editor. Zeichen des Goldenen Greifen. Konigsgraber der Scythen. New York: Prestel Publishers. p 6982.Google Scholar
Denton, GH, Karlén, W. 1973. Holocene climatic variations: their pattern and possible cause. Quaternary Research 3(2):155205.Google Scholar
Dergachev, VA, van Geel, B. 2004. Large-scale periodicity of climate change during Holocene. In: Scott, EM, Alekseev, AY, Zaitseva, GI, editors. Impact of the Environment on Human Migration in Eurasia. Dordrecht: Kluwer Academic. p 159–83.Google Scholar
Dergachev, VA, van Geel, B, Bokovenko, NA, Dirksen, VG, Kulkova, MA, van der Plicht, J, Zaitseva, GI. 2003. Climatic changes during the Holocene in the Eurasian steppe of Southern Siberia (Minusinsk and Uyuk hollows) and the development of archaeological cultures. Geophysical Research Abstracts 5:02738.Google Scholar
Dergachev, VA, Raspopov, OM, Damblon, F, Jungner, H, Zaitseva, GI. 2007. Natural climate variability during the Holocene. Radiocarbon 49(2):837–54.Google Scholar
Dirksen, VG, Chugunov, KV. 2007. Turano-Uyukskaya kotlovina Tuvi: izmeneniya prirodnykh uslovii i dinamika ee osvoeniya v drevnosti (opyt rekonstruktsii). [The Turanu-Uyuk depression of Tuva: changes of environmental conditions and the dynamic of occupation in prehistoric time (the reconstruction experience)]. In: Savinov, DG, Dluzhnevskay, GV, Lazarevskay, NA, editors. Kulturno-Ekologicheskie Oblasti: Vzaimodeistvie, Traditsii i Kulturogenez. St. Petersburg: SPb Gosudarstvennyi Universitet Publishers. p 139–65.Google Scholar
Dirksen, VG, van Geel, B, Bokovenko, NA, Chugunov, KV, Sementsov, AA, Zaitseva, GI, Cook, G, van der Plicht, J, Scott, M, Kulkova, MA, Lebedeva, LM, Burova, ND. 2007a. Izmeneniya prirodnoy sredy v golotsene i dinamika arkheologicheskikh kultur v gornykh kotlovinakh Yuzhnoy Sibiri [The changes of environment in Holocene and the dynamic of archaeological cultures in mountainous depressions of Southern Siberia]. In: Zaitseva, GI, Kulkova, MA, editors. Radiouglerod v Arkheologicheskikh i Paleoekologicheskikh Iissledovaniyakh. St. Petersburg: Teza Publishers. p 340–64.Google Scholar
Dirksen, VG, van Geel, B, Kulkova, MA, Zaitseva, GI, Sementsov, AA, Scott, EM, Cook, GT, van der Plicht, J, Lebedeva, LM, Bourova, ND, Bokovenko, NA. 2007b. Chronology of Holocene climate and vegetation changes and their connection to cultural dynamics in southern Siberia. Radiocarbon 49(2):1103–21.Google Scholar
Erlich, VA. 1999. Voprosi periodizatsii brozovogo veka Zapadnoy Sibiri v 1960 – seredine 1970 godov v otechestvennoi literature [The question of Bronze Age periodization in Western Siberia in Russian literature of the 1960s – mid-1970s]. Vestnik Omskogo Universiteta. Vypusk 2. p 5967.Google Scholar
Goosse, H, Renssen, H, Selten, FM, Haarsma, RJ, Opsteegh, JD. 2002. Potential causes of abrupt climate events: a numerical study with a three-dimensional climate model. Geophysical Research Letters 29:14.Google Scholar
Görsdorf, J, Parzinger, H, Nagler, A. 2001. New radiocarbon dates of the north Asian steppe zone and its consequences for the chronology. Radiocarbon 43(2B):1115–20.Google Scholar
Görsdorf, J, Parzinger, H, Nagler, A. 2004. 14C dating of the Siberian steppe zone from Bronze Age to Scythian time. In: Scott, EM, Alekseev, AY, Zaitseva, GI, editors. Impact of the Environment on Human Migration in Eurasia. Dordrecht: Kluwer Academic. p 83–9.Google Scholar
Gryaznov, MP. 1999. Afanasievskaya Kultura na Enisee. [The Afanasievo Culture on the Yenisei River]. St. Petersburg: Dmitry Bulanin. 136 p.Google Scholar
Heiri, O, Tinner, W, Lotter, AF. 2004. Evidence for cooler European summers during periods of changing melt-water flux to the North Atlantic. Proceedings of the National Academy of Sciences USA 101(43):15,2858.Google Scholar
Herzschuh, U. 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews 25(1–2):163–78.Google Scholar
Hu, FS, Kaufman, D, Yoneji, S, Nelson, D, Shemesh, A, Huang, Y, Tian, J, Bond, G, Clegg, B, Brown, T. 2003. Cyclic variation and solar forcing of Holocene climate in the Alaskan Subarctic. Science 301(5641):1890–93.Google Scholar
Ilyashuk, BP, Ilyashuk, EA. 2007. Chironomid record of Late Quaternary climatic and environmental changes from two sites in Central Asia (Tuva Republic, Russia) – local, regional or global causes? Quaternary Science Reviews 26(5–6):705–31.Google Scholar
Isono, D, Yamamoto, M, Irino, T, Oba, T, Murayama, M, Nakamura, T, Kawahata, H. 2009. The 1500-year climate oscillation in the mid-latitude North Pacific during the Holocene. Geology 37(7):591–94.CrossRefGoogle Scholar
Jahn, B-M, Gallet, S, Han, J. 2001. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology 178(1–4):7194.Google Scholar
Kofler, W, Krapf, V, Oberhuber, W, Bortenschlager, S. 2005. Vegetation responses to the 8200 cal. BP cold event and to long-term climatic changes in the Eastern Alps: possible influence of solar activity and North Atlantic freshwater pulses. The Holocene 15(6):779–88.Google Scholar
Koinig, KA, Shotyk, W, Lotter, AF, Ohlendorf, C, Sturm, M. 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake – the role of climate, vegetation, and land-use history. Journal of Paleolimnology 30(3):307–20.CrossRefGoogle Scholar
Koryakova, LN, Epimakhov, AV. 2007. The Ural and Western Siberia in the Bronze and Iron Ages. Cambridge: Cambridge University Press. 383 p.Google Scholar
Krasnienko, SV. 2002. Pamyatniki afanasievskoy kultury na yugo-zapade Krasnoyarskogo kraya. [The monuments of Afanasievo culture in south-western part of Krasnoyarsk Province]. In: Piotrovsky, YY, editors. Stepi Evrasii v Drevnosti i Srednevekovie. Kniga 1. St. Petersburg: Gosudarstvenny Hermitage Publishers. p 171–5.Google Scholar
Krasnienko, SV. 2003. Raskopki Sibirskoy expeditsii Instituta Materialnoy Kulturi v Nazarovskoi kotlovine [The excavations of Siberian Expedition of the Institute for the History of Material Culture in Nazarovo Depression.] In: Sedov, VV, editor. Arkheologicheskie Otkrytiya 2002 Goda. Moscow: Nauka Publishers. p 379–81.Google Scholar
Krasnienko, SV, Subbotin, AV. 1997. Arkheologicheskaya karta Sharipovskogo rayona (Krasnoyarsky Kray) [Archaeological map of Sharipovo District (Krasnoyarsk Province)]. Arkheologicheskie iziskaniya 48. St. Petersburg: LIMK RAN Publishers. 108 p.Google Scholar
Kulkova, MA. 2004. Applications of Geochemistry to paleoenvironmental reconstruction in Southern Siberia. In: Scott, EM, Alekseev, AY, Zaitseva, GI, editors. Impact of the Environment on Human Migration in Eurasia. Dordrecht: Kluwer Academic. p 255–74.Google Scholar
Kulkova, MA. 2005. Geokhimicheskaya Indikatsiya Landshaftno-Klimaticheskikh Usloviy v Golotsene v Regionakh Dvinsko-Lovatskogo Basseina i Yuzhnoi Sibiri [Geochemical indications of landscape–paleoclimatic conditions during the Holocene in regions of Dvina-Lovat' Basin and southern Siberia]. Synopsis of PhD thesis. St. Petersburg. p 32.Google Scholar
Kulkova, MA, Krasnienko, SB. 2008. The impact of Holocene climate on the development of prehistoric societies in the Southern Siberia. Abstracts of the 5th International Symposium “Radiocarbon and Archaeology.” #27.Google Scholar
Kulkova, MA, Krasnienko, SB. 2010. Okruzhayushaya sreda i drevnee naselenie Nazarovskoi kotlovini (Yuzhnaya Sibir) v period Golozena [Environment and ancient people of Nazarovo depression (Southern Siberia) during the Holocene]. In: Nesterov, EM, editor. Geologiya, geoecologiya, evoluzionnaya geografiya 10. St. Petersburg: Herzen State Pedagogical University Publishers. p 183–8.Google Scholar
Lamy, F, Ruhlemann, C, Hebbeln, D, Wefer, G. 2002. High- and low-latitude climate control on the position of the southern Peru-Chile Current during the Holocene. Paleoceanography 17:110.CrossRefGoogle Scholar
Lisitsin, NF. 1988. K voprosu o neolite Khakassii [About the question on the Neolithic of Khakassiya]. Kratkie Soobshcheniya Instituta Arkheologii Akademii Nauk SSSR 193:1520.Google Scholar
Magny, M. 2004. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113(1):6579.Google Scholar
Magny, M, Haas, JN. 2004. A major widespread climatic change around 5300 cal. yr. BP at the time of the Alpine Iceman. Journal of Quaternary Science 19(5):423–30.Google Scholar
Magny, M, Bégeot, C, Guiot, J, Peyron, O. 2003. Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22(15–17):1589–96.Google Scholar
Mayewski, PA, Rohling, EE, Stager, JC, Karlén, W, Maasch, KA, Meeker, LD, Meyerson, EA, Gasse, F, van Kreveld, S, Holmgren, K, Lee-Thorp, J, Rosqvist, G, Rack, F, Staubwasser, M, Schneider, RR, Steig, EJ. 2004. Holocene climate variability. Quaternary Research 62:243–55.Google Scholar
Minyuk, PS, Brigham-Grette, J, Melles, MV, Borkhodoev, Y, Glushkova, OY. 2007. Inorganic geochemistry of El'gygytgyn Lake sediments (northeastern Russia) as an indicator of paleoclimatic change for the last 250 kyr. Journal of Paleolimnology 37:123–33.Google Scholar
Mullins, HT, Halfman, JD. 2001. High-resolution seismic reflection evidence for middle Holocene environmental change, Owasco Lake, New York. Quaternary Research 55(3):322–31.Google Scholar
Orlova, LA, Zykina, VS. 2002. Radiocarbon dating of buried Holocene soils in Siberia. Radiocarbon 44(1):113–22.Google Scholar
Orlova, LA, Talibov, AG, Ponomarchuk, VA. 2007. Raspredelenie radiouglerodnykh dat dlya arkheologicheskikh pamyatnikov vtoroi poloviny golotsena lesostepnoi zony Zapadnoi Sibiri i ikh korrelyatsiya s izmeneniyami klimata [The distribution of radiocarbon dates for the archaeological sites of the second half of the Holocene in Western Siberian forest steppe and its correlation with climatic changes]. In: Zaitseva, GI, Kulkova, MA, editors. Radiouglerod v Arkheologicheskikh i Paleoekologicheskikh Issledovaniyakh. St. Petersburg: Teza Publishers. p 334–9.Google Scholar
Parker, AG, Goudie, AS, Stokes, S, White, K, Hodson, MJ, Manning, M, Kennet, D. 2006. A record of Holocene climate change from lake geochemical analyses in southeastern Arabia. Quaternary Research 66(3):465–76.CrossRefGoogle Scholar
Patterson, RT, Prokoph, A, Chang, A. 2004. Late Holocene sedimentary response to solar and cosmic ray activity influenced climate variability in the NE Pacific. Sedimentary Geology 172(1–2):6784.Google Scholar
Perry, CA, Hsu, KJ. 2000. Geophysical, archaeological, and historical evidence support a solar-output model for climate change. Proceedings of the National Academy of Sciences USA 97(23):12,4338.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Roth, S, Reijmer, JG. 2005. Holocene millennial to centennial carbonate cyclicity recorded in slope sediments of the Great Bahama Bank and its climatic implications. Sedimentology 52(1):161–81.Google Scholar
Schwamborn, G, Fedorov, G, Schirrmeister, L, Meyer, H, Hubberten, H-W. 2008. Periglacial sediment variations controlled by late Quaternary climate and lake level change at Elgygytgyn Crater, Arctic Siberia. Boreas 37(1):5565.Google Scholar
Semenov, VA. 2004. K probleme neolitizatsii Minusinskoi kotlovini i Tuvi (verhneeniseyskaya neoliticheskaya kultura) [The problem of Neolithization of Minusinsk depression and Tuva (Upper Yenisei Neolithic culture)]. In: Zaitseva, GI, Timifeev, VI, editors. Problemy Khronologii i Etnokulturnykh Vzaimodeistvii v Evrasii. St. Petersburg: Teza Publishers. p 7087.Google Scholar
Stuiver, M, Becker, B. 1993. High precision decadal calibration of the radiocarbon time scale AD 1950–6000 BC. Radiocarbon 35(1):3565.Google Scholar
van Geel, B, Beer, J. 2007. Solnechnaya aktivnost i ekspansiya skifskih kultur [Solar activity and the expansion of the Scythian cultures]. In: Zaitseva, GI, Kulkova, MA, editors. Radiouglerod v Arkheologicheskikh i Paleoekologicheskikh Issledovaniyakh. St. Petersburg: Teza Publishers. p 365–80.Google Scholar
van Geel, B, van der Plicht, J, Kilian, MR, Klaver, ER, Kouwenberg, JHM, Renssen, H, Reyneau-Farrera, I, Waterbolk, HT. 1998. The sharp rise of 14C ca. 800 cal BC: possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40(1):535–50.Google Scholar
van Geel, B, Raspopov, OM, Renssen, H, van der Plicht, J, Dergachev, VA, Meijer, HAJ. 1999. The role of solar forcing upon climate change. Quaternary Science Reviews 18(3):331–8.Google Scholar
van Geel, B, Bokovenko, NA, Burova, ND, Chugunov, KV, Dergachev, VA, Dirksen, VG, Kulkova, M, Nagler, A, Parzinger, H, van der Plicht, J, Vasiliev, SS, Zaitseva, GI. 2004. The sun climate change and the expansion of the Scythian culture after 850 BC. In: Scott, EM, Alekseev, AY, Zaitseva, GI, editors. Impact of the Environment on Human Migration in Eurasia. Dordrecht: Kluwer Academic. p 151–8.Google Scholar
Vadetskaya, EB. 1986. Arkheologicheskie Pamyatniki v Stepyakh Eniseya [Archaeological Monuments in the Steppes of Yenisei River]. Leningrad: Nauka Publishers. 179 p.Google Scholar
Vasiliev, SA. 2001. Pozdnie komplexy mnogosloinoi stoyanki Uy II i problema razvitiya kamennogo veka v golozene na Verkhnem Enisee [The later complexes of the multilayer site Ui-II and the problem of the development of the Stone Age cultures in the Upper Yenisei River basin during the Holocene]. Arkheologicheskie Novosti 8:6276.Google Scholar
Vdovina, TA. 2004. Avariinye raskopki na mogilnike Nizhny Ayri-Tash [The rescue excavations of Nizhny Ayri-Tash butrial ground]. Drevnosti Altaya 12:13.Google Scholar
Yu, ZC, Zhao, Y, Zhao, C, Ito, E, Kodama, KP, Chen, FH. 2006. Complex responses of regional climate on the northeastern Tibetan Plateau to Holocene large-scale climate forcing. Geophysical Research Abstracts 8:09741.Google Scholar
Zaitseva, GI, van Geel, B, Bokovenko, NA, Chugunov, KV, Dergachev, VA, Dirksen, VG, Kulkova, MA, Nagler, A, Parzinger, G, van der Plicht, J, Bourova, ND, Lebedeva, LM. 2004. Chronology and possible links between climatic and cultural change during the first millennium BC in southern Siberia and Central Asia. Radiocarbon 46(1):259–76.Google Scholar
Zaitseva, GI, Chugunov, KV, Bokovenko, NA, Dergachev, VA, Dirksen, VG, van Geel, B, Kulkova, MA, Lebedeva, LM, Sementsov, AA, van der Plicht, J, Scott, EM, Vasiliev, SS, Lokhov, KI, Bourova, N. 2005. Chronological study of archaeological sites and environmental change around 2600 BP in the Eurasian steppe belt. Geochronometria 24:97107.Google Scholar