Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T01:04:45.921Z Has data issue: false hasContentIssue false

Hamburg Radiocarbon Thin Layer Soils Database

Published online by Cambridge University Press:  18 July 2016

Peter Becker-Heidmann
Affiliation:
Institut für Bodenkunde, Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany
Hans-Wilhelm Scharpenseel
Affiliation:
Institut für Bodenkunde, Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany
Horst Wiechmann
Affiliation:
Institut für Bodenkunde, Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report here the remainder of the Hamburg University dates on thin soil layers (HAM 1652–3129).

Type
14C and Soil Dynamics: Special Section
Copyright
Copyright © The American Journal of Science 

References

Andresen, O. (ms.) 1987 Untersuchung der Isotopenverhältnisse an kalkhaltigen tiefgründigen Vertisolen aus Israel. Diploma Thesis, University of Hamburg.Google Scholar
Becker-Heidmann, P. 1989 Die Tiefenfunktionen der natürlichen Kohlenstoff-Isotopengehalte von voll-standig dünnschichtweise beprobten Parabraunerden und ihre Relation zur Dynamik der organischen Substanz in diesen Böden (dissert.) Hamburger Bodenkundliche Arbeiten 13: 1228.Google Scholar
Becker-Heidmann, P. 1990 Terminal report to the Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) on the project “International Agricultural Research. Measurement of natural 14C concentrations in thin layers of soil profiles of Asia. Contract no. 72.7866.6-01.400/1420” and to the Deutsche Forschungsgemeinschaft (DFG) on the project “Carbon fluxes in important soil classes, with emphasis on Lessivé soils and on soils of the terrestrial, of the hydromorphic, and temporarily submerged environment. Contract Scha 47/23”. Hamburg: 1–177.Google Scholar
Becker-Heidmann, P. (ms.) 1992 On-farm optimisation of the biological nitrogen fixation of grain legumes. Final report to the École Supérieure d'Agriculture d'Angers, March 1990–December 1992.Google Scholar
Becker-Heidmann, P. 1996 Requirements for an international radiocarbon soils database. Radiocarbon, this issue.Google Scholar
Becker-Heidmann, P., Lehfeldt, R. and Schipmann, R. 1995 Ein interaktives Simulationssystem zur Modellierung der Dynamik der organischen Substanz des Bodens. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 76: 733736.Google Scholar
Becker-Heidmann, P., Liu, L.-W. and Scharpenseel, H.W. 1988 Radiocarbon dating of organic matter fractions of a Chinese Mollisol. Zeitschrift für Pflanzenernaehrung und Bodenkunde 151: 3739.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1986 Thin layer δ13C and D14C monitoring of “Lessivé” soil profiles. In Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 383–390.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1989 Carbon isotope dynamics in some tropical soils. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 672679.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1992a Studies of soil organic matter dynamics using natural carbon isotopes. The Science of the Total Environment 117/118: 305312.Google Scholar
Becker-Heidmann, P. and Scharpenseel, H. W. 1992b The use of natural 14C and 13C in soils for studies on global climate change. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 535540.Google Scholar
Becker-Heidmann, P. M., Martin, U. and Scharpenseel, H. W. 1985 Radiokohlenstoffdatierung und Abbau von 14C-markiertem Reisstroh zur Modellierung der Kohlenstoffdynamik eines Reisbodens. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 43(2): 525530.Google Scholar
Bertram, H. G. 1986 Zur Rolle des Bodens im globalen Kohlenstoffzyklus. Messung der Temperaturabhängigkeit der Abbaurate des organischen Kohlenstoffs im Boden. Veröffentlichungen der Naturforschenden Gesellschaft zu Emden von 1814 (dissert.) 8.Google Scholar
Chang, J. M., Chen, Z. S., Chen, C. C. and Lin, C. F. 1983 Soil fertility characteristics of Taiwan paddy soils and their significance in soil numerical classification, (1) Alluvial soils in Kaohsiung-Pingtung region and latosols and lateritic alluvial soils in Taoyuan prefecture. Journal of the Agriculture Association of China 123: 5068.Google Scholar
Drachenberg, I. (ms.) 1992 Kennzeichnung des Humuszustandes von Böden unterschiedlicher Klimazonen mit Hilfe von Isotopenmethoden. Diploma thesis, Hamburg.Google Scholar
Gal, M., Amiel, A. J. and Ravikovitch, S. 1974 Clay mineral distribution and the origin in the soil types of Israel. Journal of Soil Science 25: 7989.Google Scholar
Greenland, D. J. 1971 Interactions between humic and fulvic acids and clay. Soil Science 111: 34.Google Scholar
Harrison, K. G., Broecker, W. S. and Bonani, G. 1993 The effect of changing land use on soil radiocarbon. Science 262: 725726.Google Scholar
Haupenthal, C., Scharpenseel, H. W., Eichwald, E. and Kirschey, K. G. 1979 Zum Einfluss einiger Standortfaktoren auf den Ertrag der Reispflanze in zwei Zinkmangel-Gebieten der Philippinen. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 29: 623632.Google Scholar
Martin, U. 1985 Decomposition of uniformly C14-labelled rice straw in a continuously flooded soil in the Philippines, Diss. Hamburger Bodenkundliche Arbeiten 6: 1129.Google Scholar
Munsell Soil Color Charts 1975 Baltimore, Munsell Color.Google Scholar
Murthy, R. S., Hirekerur, L. R., Deshpande, S. B. and Venkata Rao, B. V., eds. 1982 Benchmark Soils of India. Bangalore, National Bureau of Soil Survey and Land Use Planning: 374 p.Google Scholar
Neue, H. U. (ms.) 1980 Methodischer Vergleich von Neutronentiefensonden anhand von Modelluntersuchungen und mehrjährigen Bodenfeuchtemessungen auf Löss-, Sandlöss- und Geschiebelehmstandorten. Dissertation, Hamburg: 1285.Google Scholar
Neue, H. U. and Scharpenseel, H.W. 1987 Decomposition pattern of 14C-labeled rice straw in aerobic and submerged soils of the Philippines. Science of the Total Environment 62: 431434.Google Scholar
Neue, H. U., Becker-Heidmann, P. and Scharpenseel, H. W. 1990 Organic matter dynamics, soil properties and cultural practices in rice lands and their relationship to methane production. In Bouwman, A. F., ed., Soils and the Greenhouse Effect. Proceedings of the International Conference on Soils and the Greenhouse Effect. Chichester, John Wiley & Sons: 457–466.Google Scholar
O'Brien, B. J. and Stout, J. D. 1978 Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biology and Biochemistry 10: 309317.Google Scholar
Scharpenseel, H. W. 1978 Organo-mineralische Zinkfixierung in einer Reisbodencatena. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 27: 215220.Google Scholar
Scharpenseel, H. W. and Becker-Heidmann, P. 1989 Shifts in 14C-pattern of soil profiles due to bomb carbon, including effects of morphogenetic and turbation processes. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 627636.Google Scholar
Scharpenseel, H. W. and Becker-Heidmann, P. 1992 Twenty-five years of radiocarbon dating of soils: Paradigm of erring and learning. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 541549.Google Scholar
Scharpenseel, H. W. and Becker-Heidmann, P. 1993 The dilemma of conflicting interests between CO2's and CH4's IR trapping capacity and role, in case of CO2 even as limiting factor, for plant growth. World Resource Review 4(2): 242258.Google Scholar
Scharpenseel, H. W. and Becker-Heidmann, P. 1994a Sustainable land use in the light of resilience/elasticity to soil organic matter fluctuations. In Greenland, D. and Szabolcs, I., eds., Soil Resilience and Sustainable Land Use. Proceedings of the Symposium, Budapest 28 September to 2 October 1992. Wallingford, CAB International: 249–264.Google Scholar
Scharpenseel, H. W. and Becker-Heidmann, P. 1994b 14C dates and 13C measures of different soil species. In Lal, R., Kimble, J. M., and Levine, E., eds., Soil Processes and the Greenhouse Effect. Proceedings of the International Symposium on Greenhouse Gas Emissions and Carbon Sequestration, Ohio, 5–9 April 1993. Lincoln, Nebraska, USDA, Soil Conservation Service: 72–89.Google Scholar
Scharpenseel, H. W., Becker-Heidmann, P., Neue, H. U., Tsutsuki, K. 1989 Bomb-carbon, 14C-dating and δ13C-measurements as tracers of organic matter dynamics as well as of morphogenetic and turbation processes. The Science of the Total Environment 81/82: 99110.Google Scholar
Scharpenseel, H. W., Eichwald, E., Haupenthal, C. and Neue, H. U. 1983 Zinc deficiency in a soil toposequence, grown to rice, at Tiaong, Quezon Province, Philippines. Catena 10: 115132.Google Scholar
Scharpenseel, H. W., Pfeiffer, E.-M. and Becker-Heidmann, P. 1995a Organic carbon storage in tropical hydromorphic soils. In Carter, M. R. and Stewart, B. A., eds., Structure and Organic Matter Storage in Agricultural Soils. Boca Raton, Florida, CRC Lewis: 361392.Google Scholar
Scharpenseel, H. W., Pfeiffer, E.-M. and Becker-Heidmann, P. 1995b Soil organic matter studies and nutrient cycling. In Nuclear Techniques in Soil-Plant Studies for Sustainable Agriculture and Environmental Preservation. Proceedings of the International Symposium, 17–21 October 1994. Vienna, IAEA: 285–305.Google Scholar
Scharpenseel, H. W. and Pietig, F. 1970 Altersbestimmung mit dem Flüssigkeits-Szintillations-Spektrometer – Vereinfachte Benzolsynthese, auch aus kleinen CO2-Mengen. Atompraxis 16(3): 12.Google Scholar
Scharpenseel, H. W., Tsutsuki, K., Becker-Heidmann, P. and Freytag, J. 1986 Untersuchungen zur Kohlenstoffdynamik und Bioturbation von Mollisolen. Zeitschrift für Pflanzenernaehrung und Bodenkunde 149: 582597.Google Scholar
Singer, S. 1993 The turnover of 14C labelled groundnut straw, soil organic matter dynamics, and CO2 evolution in an Alfisol and a Vertisol of semi-arid tropical India (dissert.), Hamburger Bodenkundliche Arbeiten 19: 1235.Google Scholar
Snitwongse, P., Phongpan, S. and Neue, H. U. (ms.) 1988 Decomposition of 14C-labelled rice straw in submerged and aerated rice soil in northeastern Thailand. Paper presented at the 1st International Symposium on Paddy Soil Fertility, Chiang Mai, Thailand, Dec. 6–13, 1988.Google Scholar
Stout, J. D., Goh, K. M. and Rafter, T. A. 1981 Chemistry and turnover of naturally occurring resistant organic compounds in soil. In Paul, E. A. and Ladd, J. N., eds., Soil Biochemistry. New York, Marcel Dekker: 173.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.Google Scholar
Theng, B. K. G. 1979 Formation and Properties of Clay Polymer Complexes. London, Hilger: 362 p.Google Scholar
van Breemen, N. 1976 Genesis and Solution Chemistry of Acid Sulfate Soils in Thailand. Wageningen, Center for Agricultural Publishing and Documentation: 263 p.Google Scholar
van der Kevie, W. 1972 Morphology, genesis, occurrence and agricultural potential of acid sulfate soils in Central Thailand. Thai Journal of Agricultural Science: 165182.Google Scholar
Yaalon, D. H. and Kalmar, D. 1972 Vertical movement in an undisturbed soil: Continuous measurement of swelling and shrinkage with a sensitive apparatus. Geoderma 8: 231240.Google Scholar
Yaalon, D. H. and Kalmar, D. 1978 Dynamics of cracking and swelling clay soils: Displacement of skeletal grains, optimum depth of slickensides, and rate of intra-pedonic turbation. Earth Surface Processes 3: 3142.Google Scholar