Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T15:20:38.969Z Has data issue: false hasContentIssue false

The Carbon Origin of Structural Carbonate in Bone Apatite of Cremated Bones

Published online by Cambridge University Press:  18 July 2016

Mark Van Strydonck*
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Guy De Mulder
Affiliation:
Department of Archaeology, Ghent University, Blandijnberg 2, 9000 Ghent, Belgium
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to reveal a possible carbon exchange between carbon dioxide of the fuel and the bone apatite during the cremation process an experiment was set up using fossil fuel. Two setups were constructed, one using natural gas and one using coal. In both experiments, a carbon substitution in the apatite was revealed.

Type
Bone Dating and Paleodiet Studies
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Deforce, K. 2008. Anthracologisch onderzoek van een Romeins crematiegraf uit Gent (Botermarkt) (BM97). Brussels: Rapporten natuurwetenschappelijk onderzoek VIOE 2008–001. 5 p. In Dutch.Google Scholar
De Groote, K, Bastiaens, J, De Clercq, W, Deforce, K, Vandenbruaene, M. 1999/2000. Gallo-Romeinse graven te Huise't Peerdeken (Zingem, prov. Oost-Vlaanderen). Een multidisciplinaire analyse. Archeologie in Vlaanderen VII:3164. In Dutch.Google Scholar
De Mulder, G, Van Strydonck, M, Boudin, M, Leclercq, W, Paridaens, N, Warmenbol, E. 2007. Re-evaluation of the Late Bronze Age and Early Iron Age chronology of the western Belgian urnfields based on 14C dating of cremated bones. Radiocarbon 49(2):499514.Google Scholar
Dowker, SEP, Elliott, JC. 1979. Infrared absorption bands from NCO and NCN2– in heated carbonate-containing apatites prepared in the presence of NH4+ ions. Calcified Tissue International 29:177–8.CrossRefGoogle ScholarPubMed
Fischer, C. 1998. Actions symboliques et coutumes funéraires à l'âge du Bronze. In: Hochuli, S, Niffeler, U, Rychner, V, editors. Die Schweiz vom Paläolithikum bis zum frühen Mittelalter. III Bronzezeit. Basel: Schweizerische Gesellschaft für Ur und Frühgeschichte. p 309–25. In French.Google Scholar
Geyh, M. 2001. Bomb 14C dating of animal tissues and hair. Radiocarbon 43(2B):723–30.Google Scholar
Hissel, M, Parlevliet, M, Verspay, J. 2007. Begraven, bewonen, beakkeren. Archeologisch onderzoek bij de uitbreiding van de woonwijk Genoenhuis, gemeente Geldrop-Mierlo (Noord-Brabant). Amsterdam: Amsterdams Archeologisch Centrum Publicaties 29. 322 p. In Dutch.Google Scholar
Hüls, CM, Erlenkeuser, H, Nadeau, M-J, Grootes, PM, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2–3):587–99.CrossRefGoogle Scholar
In't Ven, I, Hollevoet, Y, Cooremans, B, De Groote, K, Deforce, K. 2005. Een Romeins grafveld ten oosten van de Stoofweg te Damme Sijsele. In: In't Ven, I, De Clercq, W, editors. Een lijn door het landschap. Archeologie en het VTN-project 1997–1998. Brussels: Archeologie in Vlaanderen. Monografie 5. p 3545.Google Scholar
Keeling, RF, Piper, SC, Bollenbacher, AF, Walker, SJ. 2009. Atmospheric CO2 values (ppmv) derived from in situ air samples collected at Mauna Loa, Hawaii, USA. Carbon Dioxide Research Group Scripps Institution of Oceanography (SIO), University of California, La Jolla. California USA. URL: http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2.Google Scholar
Lanting, JN, Brindley, AL. 1998. Dating cremated bone: the dawn of a new era. Journal of Irish Archaeology 9:17.Google Scholar
McKinley, JI. 1997. The cremated human bone from burials and cremation-related contexts. In: Fitzpatrick, AP, editor. The Iron Age, Romano-British and Anglo-Saxon Cemeteries Excavated in 1992. Salisbury: Trust for Wessex Archaeology 12. p 5572.Google Scholar
Mook, WG. 2006. Introduction to Isotope Hydrology. Stable and Radioactive Isotopes of Hydrogen, Oxygen and Carbon. London: Taylor & Francis Group. 226 p.Google Scholar
Nadeau, M-J, Grootes, PM, Schliecher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239–45.Google Scholar
Naysmith, P, Scott, EM, Cook, GT, Heinemeier, J, van der Plicht, J, Van Strydonck, M, Bronk Ramsey, C, Grootes, PM, Freeman, SPHT. 2007. A cremated bone inter-comparison study. Radiocarbon 49(2):403–8.Google Scholar
Olsen, J, Heinemeier, J, Bennike, P, Krause, C, Hornstrup, K M, Thrane, H. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35(3):791800.Google Scholar
Pautreau, JP, Mataro i Pladelasala, M, Mornais, P. 1994. Quelques aspects des crémations contemporaines en Asie du Sud-Est. In: Lambot, B, Friboulet, M, Méniel, P, editors. Le site protohistorique d'Acy-Romance (Ardennes) II. Les nécropoles dans leur contexte régional (Thugny-Trugny et tombes aristocratiques) 1986–1988–1989. Reims: Mémoire de la Société Archéologique Champenoise 8. p 306–15. In French.Google Scholar
Pautreau, JP, Mornais, P. 2005. Quelques aspects des crémations actuelles en Thailande du Nord. In: Mordant, C, Depierre, G, editors. Les pratiques funéraires l'âge du Bronze en France. Paris: Editions du CTHS. p 4760. In French.Google Scholar
Person, A, Bocherens, H, Saliège, J-F, Paris, F, Zeitoun, V, Gérard, M. 1995. Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. Journal of Archaeological Science 22(2):211–21.CrossRefGoogle Scholar
Van Strydonck, M, Van der Borg, K. 1990–91. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bulletin Koninklijk Instituut voor het Kunstpatrimonium 23:228–34.Google Scholar
Van Strydonck, M, Boudin, M, Hoefkens, M, De Mulder, G. 2005. 14C-dating of cremated bones, why does it work? Lunula. Archaeologia protohistorica 13:310.Google Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2009. 14C dating of cremated bones: the issue of sample contamination. Radiocarbon 51(2):553–68.CrossRefGoogle Scholar
Wright, LE, Schwarcz, HP. 1996. Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. Journal of Archaeological Science 23(6):933–44.Google Scholar
Zazzo, A, Saliège, J-F, Person, A, Bouchet, H. 2009. Radiocarbon dating of calcined bones: Where does the carbon come from? Radiocarbon 51(2):601–11.Google Scholar