Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:56:26.915Z Has data issue: false hasContentIssue false

Bulk Stable Isotope Analyses of 14C Dated Carbonized Crusts on the Earliest Potteries of Northeastern Europe

Published online by Cambridge University Press:  11 April 2019

Teemu Mökkönen*
Affiliation:
Department of Archaeology, University of Oulu, Oulu, Finland
Kerkko Nordqvist
Affiliation:
Department of Archaeology, University of Helsinki, Helsinki, Finland
*
*Corresponding author. Email: [email protected].

Abstract

This paper presents bulk stable isotope (δ13C, δ15N, C/N ratio) measurements of 14C dated carbonized crusts on 6th and 5th millennium cal BC pottery from Finland and northwestern Russia. Based on this data, it explores the differences in the origins of crusts attached on the inner and outer surfaces of vessels, and the changes in dietary practices and pottery use. It is argued that during the earliest phase of pottery use, mostly terrestrial ingredients were processed in the vessels, and aquatic resources became visible centuries later during the 5th millennium cal BC.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahola, M, Salo, K, Mannermaa, K. 2016. Almost gone: human skeletal material from Finnish Stone Age earth graves. Fennoscandia Archaeologica XXXIII:95122.Google Scholar
Auttila, M, Sinisalo, T, Valtonen, M, Niemi, M, Viljanen, M, Kurkilahti, M, Kunnasranta, M. 2015. Diet composition and seasonal feeding patterns of a freshwater ringed seal (Pusa hispida saimensis). Marine Mammal Science 31(1):4546.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Craig, OE, Steele, VJ, Fisher, A, Hartz, S, Andersen, SH, Donohoe, P, Glykou, A, Saul, H, Jones, DM, Koch, E, Heron, CP. 2011. Ancient lipids reveal continuity in culinary practices across the transition to agriculture in Northern Europe. PNAS 108(44):1791017915.CrossRefGoogle ScholarPubMed
Cramp, LJE, Evershed, RP, Lavento, M, Halinen, P, Mannermaa, K, Oinonen, M, Kettunen, J, Perola, M, Onkamo, P, Heyd, V. 2014. Neolithic dairy farming at the extreme of agriculture in northern Europe. Proceedings of the Royal Society B 281(1791). doi: 10.1098/rspb.2014.0819.CrossRefGoogle ScholarPubMed
Fernandes, R, Meadows, J, Dreves, A, Nadeau, N-J, Grootes, P. 2014. A preliminary study on the influence of cooking on the C and N isotopic composition of multiple organic fractions of fish (mackerel and haddock). Journal of Archaeological Science 50:153159.CrossRefGoogle Scholar
Fraser, RA, Bogaard, A, Charles, M, Styring, AK, Walleca, M, Jones, G, Ditchfield, P, Heaton, THE. 2013. Assessing natural variation and the effects of charring, burial and pre-treatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and pulses. Journal of Archaeological Science 40:47544766.CrossRefGoogle Scholar
Germain, LR, McCarthy, MD, Koch, PL, Harvey, JT. 2012. Stable carbon and nitrogen isotopes in multiple tissues of wild and captive harbor seals (Phoca vitulina) off the California coast. Marine Mammal Science 28(3):542560.CrossRefGoogle Scholar
Hartz, S, Kostyleva, E, Piezonka, H, Terberger, T, Tsydenova, N, Zhilin, MG. 2012. Hunter-gatherer pottery and charred residue dating: new results on early ceramics in the North Eurasian Forest Zone. Radiocarbon 54(3–4):10331048.CrossRefGoogle Scholar
Hellevang, H, Aagaard, P. 2015. Constraints on natural global atmospheric CO2 fluxes from 1860 to 2010 using a simplified explicit forward model. Scientific Reports 5:17352. doi: 10.1038/srep17352.CrossRefGoogle ScholarPubMed
Heron, C, Andersen, S, Fischer, A, Glykou, A, Hartz, S, Saul, H, Steele, VJ, Craig, OE. 2013. Illuminating the Late Mesolithic: residue analysis of ‘blubber’ lamps from Northern Europe. Antiquity 87(335):178188.CrossRefGoogle Scholar
Heron, C, Craig, OE. 2015. Aquatic resources in foodcrusts: identification and implication. Radiocarbon 57(4):707719.CrossRefGoogle Scholar
Heron, CP, Craig, OE, Luquin, A, Steele, VJ, Thompson, A, Piličlauskas, G. 2015. Cooking fish and drinking milk? Pottery evidence for aquatic resources and dairy products in the Southeastern Baltic from 3300-2400 Cal BC. Journal of Archaeological Science 63:3343.CrossRefGoogle Scholar
Hopia, A, Reunanen, M, Pesonen, P. 2003. GC-MS analysis of organic residues in the potsherd samples from Vantaa Maarinkunnas. Finskt Museum 102:4455.Google Scholar
Kriiska, A, Oras, E, Lõugas, L, Meadows, J, Lucquin, A, Craig, OE. 2017. Late Mesolithic Narva stage in Estonia: Pottery, settlement types and chronology. Estonian Journal of Archaeology 21(1):5286.CrossRefGoogle Scholar
Kunikita, D, Popov, AN, Lazin, BV, Morisaki, K, Matsuzaki, H. 2017a. Dating and stable isotope analysis of charred residues from Neolithic sites in the Primorye, Russian Far East. Radiocarbon 59(2):565573.CrossRefGoogle Scholar
Kunikita, D, Shevkomud, I, Yoshida, K, Onuki, S, Yamahara, T, Matsuzaki, H. 2013. Dating charred remains on pottery and analyzing food habits in the Early Neolithic period in Northeast Asia. Radiocarbon 55(2–3):13341340.CrossRefGoogle Scholar
Kunikita, D, Wand, L, Onuki, S, Sato, H, Matsuzaki, H. 2017b. Radiocarbon dating and dietary reconstruction of the Early Neolithic Houtaomuga and Shuangta sites in the Song-Nen Plain, Northeast China. Quaternary International 441:6268.CrossRefGoogle Scholar
Lougheed, BC, Filipsson, HL, Snowball, I. 2013. Large spatial variations in coastal 14C reservoir age – a case study from the Baltic Sea. Climate of the Past 9:10151028.CrossRefGoogle Scholar
Mänttäri, V. 2011. Hallien (Halichoerus grypus) ja itämerennorppien (Phoca hispida botnica) ravinnonkäyttö Perämerellä [master’s thesis]. Faculty of Science, Department of Biological and Environmental Science, Aquatic Sciences, University of Jyväskylä. Available at: http://urn.fi/URN:NBN:fi:jyu-2011090911377.Google Scholar
Miyata, Y, Minami, M, Onbe, S, Skamoto, M, Matsuzaki, H, Nakamura, T, Imamura, M. 2011. Difference in radiocarbon ages of carbonized material from the inner and outer surfaces of pottery from a wetland archaeological site. Proceedings of the Japan Academy. Series B 87:518528.CrossRefGoogle ScholarPubMed
Mökkönen, T. 2001. Hauki on kala. Saimaan vesistöalueen kivi- ja varhaismetallikauden osteologinen aineisto. Muinaistutkija 2001(3):213.Google Scholar
Nardoto, GB, de Godoy, PB, de Barros Ferraz, ES, Ometto, JPHB, Martinelli, LA. 2006. Stable carbon and nitrogen isotopic fraction between diet and swine tissues. Scientia Agricola 63(6): 579582.CrossRefGoogle Scholar
Nordqvist, K, German, KE. 2018. New remarks on the chronology of Pit-Comb Ware in Karelia (north-west Russia). Fennoscandia Archaeologica XXXIV: 131138.Google Scholar
Nordqvist, K, Mökkönen, T. 2016. New radiocarbon dates for early pottery in North-Eastern Europe. In: Lozovskaya, O, Mazurkevich, A, Dolbunova, E, editors. Traditions and innovations in the study of earliest pottery. Materials of the International Conference, May 24–27, 2016, St. Petersburg, Russia. St. Petersburg, Russia: Russian Academy of Science, Institute for the History of Material Culture. p. 204214.Google Scholar
Nordqvist, K, Mökkönen, T. 2018. Novye dannye po arkheologicheskoy khronologii Severo-Zapada Rossii: AMS-datirovki neolita-eneolita Karelii. Tverskoy arkheologicheskiy sbornik 11:3968.Google Scholar
Nunez, M. 1990. On Subneolithic pottery and its adoption in late Mesolithic Finland. Fennoscandia Archaeologica VII:2752.Google Scholar
Oras, E, Lucquin, A, Lõugas, L, Tõrv, M, Kriiska, A, Craig, OE. 2017. The adoption of pottery by north-east European hunter-gatherers: Evidence from lipid residue analysis. Journal of Archaeological Science 78:112119.CrossRefGoogle Scholar
Pääkkönen, M, Bläuer, A, Evershed, RP, Asplund, H. 2016. Reconstructing food procurement and processing in Early Comb Ware period through organic residues in Early Comb Ware and Jäkärlä Ware pottery. Fennoscandia Archaeologica XXXIII:5775.Google Scholar
Pääkkönen, M, Evershed, RP, Asplund, H. accepted. Compound-specific stable carbon isotope values of fatty acids in modern aquatic and terrestrial animals from the Baltic Sea and Finland as an aid to interpretations of the origins of organic residues preserved in archaeological pottery. Journal of Nordic Archaeological Science.Google Scholar
Pesonen, P, Oinonen, M, Carpelan, C, Onkamo, P. 2012. Early Subneolithic ceramic sequences in eastern Fennoscandia – a Bayesian approach. Radiocarbon 54(3–4):661676.CrossRefGoogle Scholar
Philippsen, B. 2012. Variability of freshwater reservoir effects. Implications for radiocarbon dating of prehistoric pottery and organisms from estuarine environments [PhD thesis]. AMS 14C Dating Centre Department of Physics and Astronomy, Aarhus University.Google Scholar
Philippsen, B. 2015. Hard water and old food. The freshwater reservoir effect in radiocarbon dating of food residues on potter. Documenta Praehistorica XLII:159–70.Google Scholar
Philippsen, B, Meadows, J. 2014. Inland Ertebølle Culture: the importance of aquatic resources and the freshwater reservoir effect in radiocarbon dates from pottery food crusts. In: Fernandes R, Meadows J, editors. Human exploitation of aquatic landscapes. Internet Archaeology 37. doi: 10.11141/ia.37.9.CrossRefGoogle Scholar
Piezonka, H. 2015. Jäger, Fischer, Töpfer: Wildbeutergruppen mit früher Keramik in Nordosteuropa im 6. und 5. Jahrtausend v. Chr. (Archäologie in Eurasien 30). Bonn: Habelt.Google Scholar
Piezonka, H, Meadows, J, Hartz, S, Kostyleva, E, Nedomolkina, N, Ivanishcheva, M, Kosorukova, N, Terberger, T. 2016. Stone Age pottery chronology in the Northeast European forest zone: new AMS and EA-IMRS results on foodcrusts. Radiocarbon 58(2):267289.CrossRefGoogle Scholar
Piličiauskas, G, Heron, C. 2015. Aquatic radiocarbon reservoir offsets in the southeastern Baltic. Radiocarbon 57(4):539556.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50, 000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Saari, O. 2014. Hauen (Esox lucius L.) ravinnonkäyttö pienissä suomalaisissa metsäjärvissä mahanäytteiden ja vakaiden isotooppien perusteella [master’s thesis]. Faculty of Science, Department of Biological and Environmental Science, Aquatic Sciences, University of Jyväskylä. Available at: http://urn.fi/URN:NBN:fi:jyu-201402241278.Google Scholar
Seitsonen, O, Seitsonen, S, Broderick, LG, Gerasimov, DV. 2017. Burnt bones by Europe’s largest lake: Zooarchaeology of the Stone Age and Early Metal period hunter-gatherers at Lake Ladoga, NW Russia. Journal of Archaeological Science: Reports 11:131146.CrossRefGoogle Scholar
Siiriäinen, A. 1981. On the cultural ecology of the Finnish Stone Age. Suomen Museo 87(1980):540.Google Scholar
Sinisalo, T, Valtonen, ET, Helle, E, Jones, RI. 2006. Combining stable isotope and intestinal parasite information to evaluate dietary differences between individual ridged seals (Phoca hispida botnica). Canadian Journal of Zoology 84:823831.CrossRefGoogle Scholar
Tarasov, A, Nordqvist, K, Mökkönen, T, Khoroshun, T. 2017. Radiocarbon chronology of the Neolithic–Eneolithic period in the Karelian Republic (Russia). Documenta Praehistorica XLIV:98121.Google Scholar
Teetaert, D, Boudin, M, Saverwyns, S, Crombé, P. 2017. Food and soot: Organic residues on outer pottery surfaces. Radiocarbon 59(5):16091621.CrossRefGoogle Scholar
Torniainen, J, Vuorinen, PJ, Jones, RI, Keinänen, M, Palm, S, Vuori, KAM, Kiljunen, M. 2013. Migratory connectivity of two Baltic Sea salmon populations: retrospective analysis using stable isotopes of scales. ICES Journal of Marine Science 71(2):336344.CrossRefGoogle Scholar
Ukkonen, P. 1992. Suomen nisäkkäiden varhainen historia – Arkeologinen luumateriaali faunahistoriallisen tutkimuksen välineenä [master of science thesis]. Zoology, Ecology, University of Helsinki.Google Scholar
Ukkonen, P. 2001. Shaped by the Ice Age. Reconstructing the history of mammals in Finland during the Late Pleistocene and Early Holocene. Helsinki: University Printing House.Google Scholar
Vanhanen, S, Pesonen, P. 2016. Wild plant gathering in Stone Age Finland. Quaternary International 404(Part A):4355.CrossRefGoogle Scholar
Yoshida, K, Kunikita, D, Miyazaki, Y, Nisgida, Y, Miyao, T, Matsuzaki, H. 2013. Dating and stable isotope analysis of charred residues on the incipient Jomon pottery (Japan). Radiocarbon 55(2–3):13221333.CrossRefGoogle Scholar
Supplementary material: File

Mökkönen and Nordqvist supplementary material

Table S1

Download Mökkönen and Nordqvist supplementary material(File)
File 13.7 KB
Supplementary material: File

Mökkönen and Nordqvist supplementary material

Figure S1

Download Mökkönen and Nordqvist supplementary material(File)
File 78.8 KB