Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T17:29:26.377Z Has data issue: false hasContentIssue false

ABSOLUTE DATES OF ARTIFACTS FROM LUSATIAN URNFIELD CEMETERY AT BRZEZIE, GREATER POLAND

Published online by Cambridge University Press:  10 November 2022

A Ginter*
Affiliation:
University of Lodz, Faculty of Philosophy and History, Institute of Archaeology, Lodz, Poland
P Moska
Affiliation:
Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Gliwice, Poland
G Poręba
Affiliation:
Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Gliwice, Poland
K Tudyka
Affiliation:
Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Gliwice, Poland
A Szymak
Affiliation:
Silesian University of Technology, Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Gliwice, Poland
G Szczurek
Affiliation:
Adam Mickiewicz University, Faculty of Pedagogy and Fine Arts in Kalisz, Poznań, Poland
*
*Corresponding author. Email: [email protected]

Abstract

Brzezie in the Pleszew region was first mentioned in archaeological literature, as the location where a treasure of gold artifacts dating back to the 3rd period of the Bronze Age was discovered in 1876. Archaeological research has been conducted there almost continuously since 1985. The result of many years of fieldwork is the discovery of 363 late Bronze Age and Early Iron Age graves, as well as 50 burials of the Przeworsk culture from the era of Roman influence. In the last few years, further research has been conducted by archeologist Grzegorz Szczurek. After comprehensive geophysical prospecting, the extent of the necropolis was established, and more graves were excavated. For the first time, materials for radiocarbon and luminescence dating were also collected to determine the absolute chronology for this archaeological site. Four samples were dated in the Poznań radiocarbon laboratory, and five luminescence tests were conducted in the Gliwice luminescence laboratory. Due to the complete thermo-destruction of collagen in human bones, age determination was based on carbonate fractionation. In one case, a piece of charcoal was selected for dating purposes. Considering uncertainties and the fact that both methods date different events, the results reveal concurrence, giving a 1000–500 BC range.

Type
Conference Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 3rd Radiocarbon in the Environment Conference, Gliwice, Poland, 5–9 July 2021

References

REFERENCES

Aitken, MJ. 1985. Thermoluminescence dating. London: Academic Press.Google Scholar
Aitken, MJ, Xie, J. 1990. Moisture correction for annual gamma dose. Ancient TL 8(2):69.Google Scholar
Berger, GW. 2010. An alternate form of probability-distribution plot for De values. Ancient TL 28:1122.Google Scholar
Cresswell, AJ, Carter, J, Sanderson, DCW. 2018. Dose rate conversion parameters: Assessment of nuclear data. Radiation Measurements 120: 195201. doi: 10.1016/j.radmeas.2018.02.007.CrossRefGoogle Scholar
Brennan, BJ, Lyons, RG, Phillips, SW. 1991. Attenuation of alpha particle track dose for spherical grains. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18(1–2):249–53.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1): 103112.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51(1):337360. doi: 10.1017/S0033822200033865.Google Scholar
Chochorowski, J. 2007. Metodyczne i metodologiczne problemy datowania radiowęglowego pozostałości kremacji z grobów ciałopalnych kultury łużyckiej (na przykładzie materiałów z cmentarzyska w Kietrzu). Studia nad epoką brązu i wczesną epoką żelaza. Księga poświęcona Profesorowi Markowi Gedlowi na pięćdziesięciolecie pracy w Uniwersytecie Jagiellońskim, ed. J. Chochorowski, Kraków. p. 103–138.Google Scholar
Czernik, J, Goslar, T. 2001. Preparation of graphite targets in the Gliwice Radiocarbon Laboratory for AMS 14C dating. Radiocarbon 43(1):283291.CrossRefGoogle Scholar
Czopek, S, Kusiak, J, Trybała – Zawiślak, K. 2013. Thermoluminescent dating of the Late Bronze and Early Iron Age pottery on sites in Kłyżów and Jarosław (SE Poland). Geochronometria 40/2:113–125.CrossRefGoogle Scholar
Durcan, JA, King, GE, Duller, GAT. 2015. DRAC: Dose rate and age calculator for trapped charge dating. Quaternary Geochronology 28:5461. doi: 10.1016/j.quageo.2015.03.012.CrossRefGoogle Scholar
Galbraith, RF, Roberts, RG, Laslett, GM, Yoshida, H, Olley, JM. 1999. Optical dating of single and multiple grains of quartz from Jinminum Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 41:18351857.CrossRefGoogle Scholar
Gediga, B. 2019. Uwagi do datowania i periodyzacji użytkowania cmentarzyska w Domaslawiu-Chrzanowie, pow. wrocławski. Przegląd Archeologiczny 67:4971.Google Scholar
Goslar, T. 2018. Raport z wykonania datowań C-14 w Poznańskim Laboratorium Radiowęglowym, numer pracy 14018/18. Poznań.Google Scholar
Goslar, T. 2019. Chronologia i periodyzacja cmentarzyska z epoki brązu i wczesnej epoki żelaza w Domasławiu, pow. wrocławski, na podstawie datowania radiowęglowego. Przegląd Archeologiczny 67:3148.Google Scholar
Goslar, T, Czernik, J, Goslar, E. 2004. Low-energy 14C AMS in Poznań Radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223–224:511. doi: 10.1016/j.nimb.2004.04.005.CrossRefGoogle Scholar
Guérin, G, Mercier, N, Nathan, R, Adamiec, G, Lefrais, Y. 2012. On the use of the infinite matrix assumption and associated concepts: a critical review. Radiation Measurements 47(9):778–85. doi: 10.1016/j.radmeas.2012.04.004.CrossRefGoogle Scholar
Kaczmarek, M. 2017. The snares of ostensible homogeneity. Lusatian culture or Lusatian urnfields. In: The past societies. Polish lands from the first evidence of human presence to the Early Middle Age, 2000–500 BC. Ed. Urszula Bugaj, Warszawa. p. 263–293.Google Scholar
Kreutzer, S, Burow, C, Dietze, M, Fuchs, M, Schmidt, C, Fischer, M, Friedrich, J, Riedesel, S, Autzen, M, Mittelstrass, D. 2020. Luminescence: comprehensive luminescence dating data analysis. R package version 0.9.10. https://CRAN.R-project.org/package=Luminescence.Google Scholar
Kreutzer, S, Schmidt, C, Fuchs, MC, Dietze, M, Fischer, M, Fuchs, M. 2012. Introducing an R package for luminescence dating analysis. Ancient TL 30:18.Google Scholar
Lai, ZP, Zöller, L, Fuchs, M, Brückner, H. 2008. Alpha efficiency determination for OSL of quartz extracted from Chinese loess. Radiation Measurements 43(2–6): 767770. doi: 10.1016/j.radmeas.2008.01.022.CrossRefGoogle Scholar
Lanting, JN, Aerts-Bijma, A, van der Plicht, H. 2001. Dating of cremated bones. Radiocarbon 43(2A): 249254.CrossRefGoogle Scholar
Moska, P, Bluszcz, A, Poręba, G, Tudyka, K, Adamiec, G, Szymak, A, Przybyła, A. 2021. Luminescence dating procedures at Gliwice luminescence dating laboratory. Geochronometria 48:115.CrossRefGoogle Scholar
Murray, AS, Wintle, AG. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1):5773. doi: 10.1016/S1350-4487(99)00253-X.CrossRefGoogle Scholar
Naysmith, P, Scott, E, Cook, G, Heinemeier, J, Van der Plicht, J, Van Strydonck, M, … Freeman, S. 2007. A cremated bone intercomparison study. Radiocarbon 49(2):403408. doi: 10.1017/S0033822200042338.CrossRefGoogle Scholar
Poręba, G, Tudyka, K, Walencik-Łata, A, Kolarczyk, A. 2020. Bias in 238U decay chain members measured by γ-ray spectrometry due to 222Rn leakage. Applied Radiation and Isotopes 156:108945. doi: 10.1016/j.apradiso.2019.108945.CrossRefGoogle ScholarPubMed
Prescott, JR, Stephan, LG. 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependences. PACT 6:1725.Google Scholar
Reimer, P, Austin, W, Bard, E, Bayliss, A, Blackwell, P, Bronk Ramsey, C, … Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757. doi: 10.1017/RDC.2020.41.CrossRefGoogle Scholar
Sadowski, JN. 1877. Wykaz zabytków przedhistorycznych na ziemiach polskich, z. I. Porzecza Warty i Baryczy, Kraków.Google Scholar
Schwartz, W. 1876. Jahresbericht über die Funde in Posen im Jahre 1876. Zeitschrift für Ethnologie 8: 270288.Google Scholar
Snoeck, C, Brock, F, Schulting, R. 2014. Carbon exchanges between bone apatite and fuels during cremation: impact on radiocarbon dates. Radiocarbon 56(2):591602. doi: 10.2458/56.17454.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Szczurek, G. 2012. Osadnictwo ludności kultury łużyckiej w rejonie Brzezia w południowej Wielkopolsce. Folia Praehistorica Posnaniensia 17:393410.Google Scholar
Szczurek, G. 2021. Pleszewski mikroregion osadniczy społeczności łużyckich pól popielnicowych/The Pleszew Settlement Lusatian Urnfields Micro-Region. Hyperborea 4:5. Poznań.Google Scholar
Trachsel, M. 2004. Untersuchungen zur relativen und absoluten Chronologie der Hallstatzeit, 1–2, Universitätsforschungen zur prähistorischen Archäeologie 104. Bonn.Google Scholar
Trybała-Zawiślak, K. 2012. Kłyżów, stan.2 i Mokrzyszów, stan.2 – cmentarzyska ciałopalne z wczesnej epoki żelaza. Rzeszów.Google Scholar
Tudyka, K, Bluszcz, A, Poręba, G, Miłosz, S, Adamiec, G, Kolarczyk, A, Kolb, T, Lomax, J, Fuchs, M. 2020. Increased dose rate precision in combined α and β counting in the μDose system—probabilistic approach to data analysis. Radiation Measurements 134:106310. doi: 10.1016/j.radmeas.2020.106310.CrossRefGoogle Scholar
Tudyka, K, Miłosz, S, Adamiec, G, Bluszcz, A, Poręba, G, Paszkowski, Ł, Kolarczyk, A. 2018. μDose: A compact system for environmental radioactivity and dose rate measurement. Radiation Measurements 118: 813. doi: 10.1016/j.radmeas.2018.07.016.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2009. 14C dating of cremated bones: the issue of sample contamination. Radiocarbon 51(2):553568. doi: 10.1017/S0033822200055922.CrossRefGoogle Scholar
Walanus, A, Goslar, T. 2009. Datowanie radiowęglowe. Kraków.Google Scholar
Yokoyama, Y, Nguyen, HV, Quaegebeur, J-P, Poupeau, G. 1982. Some problems encountered in the evaluation of annual dose-rate in the electron spin resonance dating of fossil bones. PACT 6:103115.Google Scholar