Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T20:22:48.288Z Has data issue: false hasContentIssue false

Otolith-Based Chronology of Brazilian Shellmounds

Published online by Cambridge University Press:  25 January 2019

Carla Carvalho*
Affiliation:
Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro São João Batista, Niterói, 24020-141, Rio de Janeiro, Brazil Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Universidade Federal Fluminense (UFF), Av. Gal. Milton Tavares de Souza, Niterói, 24210-346, Rio de Janeiro, Brazil
Fabiana Oliveira
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Universidade Federal Fluminense (UFF), Av. Gal. Milton Tavares de Souza, Niterói, 24210-346, Rio de Janeiro, Brazil
Kita Macario
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Universidade Federal Fluminense (UFF), Av. Gal. Milton Tavares de Souza, Niterói, 24210-346, Rio de Janeiro, Brazil
Tania Lima
Affiliation:
Departamento de Antropologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil
Ingrid Chanca
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Universidade Federal Fluminense (UFF), Av. Gal. Milton Tavares de Souza, Niterói, 24210-346, Rio de Janeiro, Brazil
Eduardo Q Alves
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, United Kingdom
Thayse Bertucci
Affiliation:
Departamento de Biologia Marinha, Laboratório de Paleoecologia e Mudanças Globais, Universidade Federal Fluminense, Campus do Gragoatá, Bloco M, Rua Alexandre Moura, Niterói, 24210-200, Rio de Janeiro, Brazil
Orangel Aguilera
Affiliation:
Departamento de Biologia Marinha, Laboratório de Paleoecologia e Mudanças Globais, Universidade Federal Fluminense, Campus do Gragoatá, Bloco M, Rua Alexandre Moura, Niterói, 24210-200, Rio de Janeiro, Brazil
*
*Corresponding author. Email: [email protected].

Abstract

The radiocarbon (14C) chronology of hunter-fisher-gatherers’ archaeological settlements along the Brazilian coast is usually based on mollusk shells, charcoal from hearths, and eventually human bones. However, fish otoliths are found in several archaeological contexts and may represent a reliable option as a chronological record. In this work, we compare the 14C dates of whitemouth croakers (Micropogonias furnieri) otoliths with dates obtained from other materials (shell and charcoal), collected from shellmounds on the coast of Rio de Janeiro, with the aim of improving the accuracy in the 14C dating of Brazilian shellmounds, strengthening the comprehension of the native populations’ occupational trends and the coeval palaeoceanographic context. Based on x-ray diffraction results for archaeological otoliths, their geochemical composition indicates minimal diagenesis effect over time even under burial conditions in the studied sites. The comparison between otolith dates and dates obtained from other proxies revealed similar results but with decreased deviations in otolith dates in all of the studied sites.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilera, O, Belem, AL, Angelica, R, Macario, K, Crapez, M, Nepomuceno, A, Paes, E, Tenório, MC, Dias, F, Souza, R, Rapagnã, L, Carvalho, C, Silva, E. 2016. Fish bone diagenesis in southeastern Brazilian shell mounds and its importance for paleoenvironmental studies. Quaternary International 391:1825.Google Scholar
Albuquerque, CQ, Miekeley, N, Muelbert, JH, Walther, BD, Jaureguizar, AJ. 2012. Estuarine dependency in a marine fish evaluated with otolith chemistry. Marine Biololgy 159:22292239.Google Scholar
Alves, E, Macario, K, Souza, R, Pimenta, A, Douka, K, Oliveira, F, Chanca, I, Angulo, R. 2015a. Radiocarbon reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quaternary Geochronology 29:3035.Google Scholar
Alves, E, Macario, K, Souza, R, Aguilera, O, Goulart, AC, Scheel-Ybert, R, Bachelet, C, Carvalho, C, Oliveira, F, Douka, K. 2015b. Marine reservoir corrections on the southeastern coast of Brazil: paired samples from the Saquarema shellmound. Radiocarbon 57:19.Google Scholar
Alves, EQ, Macario, K, Ascough, P, Bronk Ramsey, C. 2018. The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms, and prospects. Reviews of Geophysics 56:278305. https://doi.org/10.1002/2017RG000588.Google Scholar
Angulo, RJ, Lessa, GC, Souza, MCA. 2006. A critical review of mid-to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews 25:486506.Google Scholar
Angulo, RJ, Reimer, PJ, Souza, MC, Scheel-Ybert, R, Tenório, MC, Disaró, ST, Gaspar, MD. 2007. A tentative determination of upwelling influence on the paleo-surficial marine water reservoir effect in southeastern Brazil. Radiocarbon 49(3):12551259.Google Scholar
Anjos, RM, Macario, KD, Gomes, PRS, Linares, R, Queiroz, E, Carvalho, C. 2013. Towards a complete 14C AMS facility at the Universidade Federal Fluminense (Niterói, Brazil): Sample preparation laboratory tests. Nuclear Instruments and Methods in Physics Research B 294:173175.Google Scholar
Andrews, AH, Kalish, JM, Newman, SJ, Johnston, JM. 2011. Bomb radiocarbon dating of three important reef-fish species using Indo-Pacific d14C chronologies. Marine and Freshwater Research 62:12591269.Google Scholar
Bartholomeu, RL. 2010. Análise dos registros palinológicos costeiros Quaternários na área da Lagoa de Itaipú, Estado do Rio de Janeiro, Brasil [PhD thesis]. Federal University of Rio de Janeiro (UFRJ), Geosciences Institute.Google Scholar
Bertucci, T, Aguilera, O, Vasconcelos, C, Nascimento, G, Marques, G, Macario, K, de Albuquerque, CQ, Lima, T, Belém, A. 2018. Palaeogeography, Palaeoclimatology, Palaeoecology 503:4050. https://doi.org/10.1016/j.palaeo.2018.04.030.Google Scholar
Brock, F, Higham, T, Bronk Ramsey, C. 2010. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37:855865.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1): 337360.Google Scholar
Campana, SE, Neilson, JD. 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42:10141032.Google Scholar
Campana, SE. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms, and applications. Marine Ecology Progress Series 188:263297.Google Scholar
Carvalho, C, Macario, K, Oliveira, MI, Oliveira, F, Chanca, I, Alves, E, Souza, R, Aguilera, O, Douka, K. 2015. Potential use of archaeological snail shells for the calculation of local marine reservoir effect. Radiocarbon 57(3):459467.Google Scholar
Castro, MD, Macario, KD, Gomes, PRS. 2015. New software for AMS data analysis developed at IF-UFF Brazil. Nuclear Instruments and Methods in Physics Research B 361:526530.Google Scholar
Colonese, AC, Collins, M, Lucquin, A, Eustace, M, Hancock, Y, Ponzoni, RAR, Mora, A, Smith, C, DeBlasis, P, Figuti, L, Wesolowski, V, Plens, CR, Eggers, S, Farias, DSE, Gledhill, A, Craig, OE. 2014. Long-term resilience of Late Holocene coastal subsistence system in southeastern South America. PLoS ONE 9(4):e93854.Google Scholar
Cook, M, Fitzhugh, GR, Franks, JS. 2009. Validation of yellowedge grouper, Epinephelus flavolimbatus, age using nuclear bomb-produced radiocarbon. Environmental Biology of Fishes 86:461472.Google Scholar
Cordeiro, LGMS, Belem, AL, Bouloubassi, I, Rangel, B, Sifeddine, A, Capilla, R, Albuquerque, ALS. 2014. Reconstruction of southwestern Atlantic sea surface temperatures during the last Century: Cabo Frio continental shelf (Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology 415:225232.Google Scholar
Darnaude, AM, Sturrock, A, Trueman, CN, Mouillot, D, Steven, E, Campana, SE, Hunter, E. 2014. Listening in on the past: what can otolith δ18O values really tell us about the environmental history of fishes? PLoS ONE 9:e108539.Google Scholar
Dias, GTM, Kjerfve, B. 2009. Barrier and beach ridge systems of the Rio de Janeiro coast. In: Dillenburg SR, Hesp P, editors. Geology and geomorphology of Holocene coastal barriers of Brazil. Lectures notes in earth sciences 107. Berlin Heidelberg: Springer-Verlag. p. 225252.Google Scholar
de Souza, RC, Lima, TA, Silva, EP. 2010. Holocene molluscs from Rio de Janeiro state coast, Brazil. Check List 6(2):301308.Google Scholar
Duprey, N, Galipaud, J-D, Cabioch, G, Lazareth, CE. 2014. Isotopic records from archeological giant clams reveal a variable climate during the southwestern Pacific colonization ca. 3.0 ka BP. Palaeogeography, Palaeoclimatology, Palaeoecology 404: 97108.Google Scholar
Eirado, LG, Heilbron, M, Almaeida, JCH. 2006. Os terrenos tectônicos da faixa ribeirana na serra da Bocaina e na baía da Ilha Grande, Sudeste do Brasil. Rev. Bras. Geociênc. 36(3):426436.Google Scholar
Figuti, L, Plens, CR, DeBlasis, P. 2013. Small sambaquis and big chronologies: shellmound building and hunter-gatherers in Neotropical highlands. Radiocarbon 55(3):12151221.Google Scholar
Fleming, K, Johnston, P, Zwartz, D, Yokoyama, Y, Lambeck, K, Chappell, J. 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth and Planetary Science Letters 163:327342.Google Scholar
Ghosh, P, Eiler, J, Campana, SE, Feeney, RF. 2007. Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochimica et Cosmochimica Acta 71:27362744.Google Scholar
Grammer, GL, Fallon, SJ, Izzo, C, Wood, R, Gillanders, BM. 2015. Investigating bomb radiocarbon transport in the southern Pacific ocean with otolith radiocarbon. Earth and Planetary Science Letters 424:5968.Google Scholar
Holbach, A, Cowley, PD, Kramar, U, Neumann, T. 2012. Otolith chemistry of fishes from Kosi Bay, South Africa: A preliminary multiple analytical methods approach to reconstruct fish migrations. Estuarine, Coastal and Shelf Science 109:3040.Google Scholar
Kalish, JK. 1993. Pre- and post-bomb radiocarbon in fish otoliths. Earth and Planetary Science Letters 114:549554.Google Scholar
Kneip, LM, Pallestrini, L, De Morais, JL, Cunha, FL. 1981. The radiocarbon dating of the Sambaqui de Camboinhas, Itaipú, Niterói, RJ, Brazil. Anais da Academia Brasileira de Ciências 53:339343.Google Scholar
Kneip, LM. 2001. O sambaqui de Manitiba I e outros sambaquis de Saquarema, RJ. Série Arquelogia-Museu Nacional. UFRJ, Rio de Janeiro.Google Scholar
Lessa, DVO, Venancio, IM, dos Santos, TP, Belem, AL, Turcq, BJ, Sifeddine, A, Albuquerque, ALS. 2016. Holocene oscillations of Southwest Atlantic shelf circulation based on planktonic foraminifera from an upwelling system (off Cabo Frio, southeastern Brazil). The Holocene 26:11751187.Google Scholar
Lima, TA. 1991. Dos mariscos aos peixes: um estudo zooarqueológico de mudança de subsistência na pré-história do Rio de Janeiro [PhD thesis]. São Paulo University, São Paulo.Google Scholar
Lima, TA, Macario, KD, Anjos, RM, Gomes, PRS, Coimbra, MM, Elmore, D. 2003. AMS dating of early shellmounds of the southeastern Brazilian coast. Braz. J. Phys. 33(2): 276279.Google Scholar
Lima, TA, Macario, KD, Anjos, RM, Gomes, PRS, Coimbra, MM, Elmore, D. 2004. The earliest shellmounds of the central-south Brazilian coast. Nuclear Instruments and Methods in Physics Research B 223–224:691694.Google Scholar
Lopes, MS, Bertucci, TCP, Rapagnã, L, Tubino, RA, Monteiro-Neto, C, Tomas, ARG, Tenorio, MC, Lima, T, Souza, R, Carrillo-Briceño, JD, Haimovici, M, Macario, K, Carvalho, C, Aguilera, O. 2016. The Path Towards Endangered Species: Prehistoric Fisheries in Southeastern Brazil. PLoS ONE 11(6): e0154476. https://doi.org/10.1371/journal.pone.0154476.Google Scholar
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Oliveira, FM, Castro, MD, Chanca, IS, Silveira, MFM, Pessenda, LCR, Moraes, LMB, Campos, TB, Cherkinsky, A. 2013. The Brazilian AMS Radiocarbon laboratory (LAC–UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55:325330.Google Scholar
Macario, KD, Souza, RCCL, Trindade, DC, Decco, J, Lima, TA, Aguilera, OA, Marques, AN, Alves, EQ, Oliveira, FM, Chanca, IS, Carvalho, C, Anjos, RM, Pamplona, FC, Silva, EP. 2014. Chronological model of a Brazilian Holocene shellmound (Sambaqui da Tarioba, Rio de Janeiro, Brazil). Radiocarbon 56:489499.Google Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, Chanca, IS, Alves, EQ, Jou, R, Oliveira, MI, Brandão, B, Moreira, VN, Muniz, M, Linares, R, Gomes, PRS, Anjos, RM, Castro, MD, Anjos, L, Marques, AN, Rodrigues, LF. 2015a. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC–UFF) in Brazil. Nuclear Instruments and Methods in Physics Research B 361:402405.Google Scholar
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, EP, Douka, K, Decco, J, Trindade, DC, Marques, AN, Anjos, RM, Pamplona, FC. 2015b. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. J. Environ. Radioact. 143:1419.Google Scholar
Macario, KD, Alves, EQ, Chanca, IS, Oliveira, FM, Carvalho, C, Souza, R, Aguilera, O, Tenório, MC, Rapagna, LC, Douka, K, Silva, E. 2016a. The Usiminas shellmound on the Cabo Frio Island: Marine reservoir effect in an upwelling region on the coast of Brazil. Quat. Geochronol. 35:3642.Google Scholar
Macario, KD, Alves, EQ, Carvalho, C, Oliveira, FM, Bronk-Ramsey, C, Chivall, D, Souza, R, Simone, LRL, Cavallari, D. 2016b. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir. Sci. Rep. 6:27395. https://doi.org/10.1038/srep27395 Google Scholar
Macario, KD, Tenório, MC, Alves, EQ, Oliveira, FM, Chanca, IS, Netto, B, Carvalho, C, Souza, R, Aguilera, O, Guimarães, RB. 2017. Terrestrial mollusks as chronological records in Brazilian shellmounds. Radiocarbon 59(5):15611577.Google Scholar
Macario, KD, Alves, EQ, Belém, AL, Aguilera, O, Bertucci, T, Tenório, MC, Oliveira, FM, Chanca, I, Carvalho, C, Souza, R, Scheel-Ybert, R, Nascimento, G, Dias, F, Caon, J. 2018 The marine reservoir effect on the coast of Rio De Janeiro: deriving ∆R values from fish otoliths and mollusk shells. Radiocarbon 60(4):11511168. https://doi.org/10.1017/RDC.2018.23.Google Scholar
Martin, L, Suguio, K. 1978. Excursion route along the coastline between the town of Cananeia (state of Sao Paulo) and Guaratiba outlet (state of Rio de Janeiro). In: International Symposium on Coastal Evolution, vol. 2, special publication. p. 198.Google Scholar
Milheira, RG, Macario, KD, Chanca, IS, Alves, EQ. 2017. Archaeological earthen mound complex in Patos Lagoon, southern Brazil: chronological model and freshwater influence. Radiocarbon 59(1):195214.Google Scholar
Milliman, JD. 1974. Recent sedimentary carbonates: marine carbonate. Part I. Berlin Heidelberg: Springer-Verlag.Google Scholar
Piner, KR, Wischniowski, SG. 2004. Pacific halibut chronology of bomb radiocarbon in otoliths from 1944 to 1981 and a validation of ageing methods. Journal of Fish Biology 64:10601071.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatte, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Rios, EC. 1994. Seashells of Brazil. Rio Grande: FURG.Google Scholar
Sanders, CJ, Caldeira, PP, Smoak, JM, Ketterer, ME, Belem, A, UMN, Mendoza, LGMS, Codeiro, Silva-Filho, EV, Patchineelam, SR, Albuquerque, ALS. 2014. Recent organic carbon accumulation (∼100 years) along the Cabo Frio, Brazil upwelling region. Continental Shelf Research 75:6875.Google Scholar
Schloesser, RW, Rooker, JR, Louchuoarn, P, Neilson, JD, Secor, DH. 2009. Limnology and Oceanography 55:18691887.Google Scholar
Stanley, RRE, Bradbury, IR, DiBacco, C, Snelgrove, PVR, Thorrold, SR, Killen, SS. 2015. Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua). ICES Journal of Marine Science 2015:114.Google Scholar
Tenório, MC, Afonso, MC, Pinto, DC. 2010. Arqueologia do Arraial do Cabo – com foco nos sítios da Ilha do Cabo Frio. Rev. Mus. Arqueol. Etnol. 20:127145.Google Scholar
Thomas, KD. 2015a. Molluscs emergent, Part I: themes and trends in the scientific investigation of mollusc shells as resources for archaeological research. Journal of Archaeological Science 56:133140.Google Scholar
Thomas, KD. 2015b. Molluscs emergent, Part II: themes and trends in the scientific investigation of molluscs and their shells as past human resources. Journal of Archaeological Science 56:159167 Google Scholar
Thorrold, SR, Campana, SE, Jones, CM, Swart, PK. 1997. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 61:29092919.Google Scholar
Turcq, B, Martin, L, Flexor, JM, Suguio, K, Pierre, C, Tasayco-Ortega, L. 1999. Origin and evolution of the Quaternary coastal plain between Guaratiba and Cabo Frio, State of Rio de Janeiro, Brazil. In: Knoppers BA, Bidone ED, Abrãao JJ, editors. Environmental geochemistry of coastal lagoon systems of Rio de Janeiro, Brazil. Niterói: UFF/FINEP. p. 2546.Google Scholar
Venancio, IM, Gomes, VP, Belem, AL, Albuquerque, ALS. 2016. Surface-to-subsurface temperature variations during the last century in a western boundary upwelling system (Southeastern, Brazil). Continental Shelf Research 125:97106.Google Scholar
Wagner, G, Hilbert, K, Bandeira, D, Tenório, MC, Okumura, MM. 2011. Sambaquis (shellmounds) of the Brazilian coast. Quaternary International 239:5160.Google Scholar
Wesolowski, V, de Souza, SM, Reinhard, KJ, Ceccantini, G. 2010. Evaluating microfossil content of dental calculus from Brazilian sambaquis. Journal of Archaeological Science 37(6):13261338.Google Scholar
Williams, AN. 2012. The use of summed radiocarbon probability distributions in archaeology: a review of methods. Journal of Archaeological Science 39:578589.Google Scholar
Zazzo, A, Saliège, J-F. 2011. Radiocarbon dating of biological apatites: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 310:5261 Google Scholar
Supplementary material: File

Carvalho et al. supplementary material

Carvalho et al. supplementary material 1

Download Carvalho et al. supplementary material(File)
File 865.8 KB
Supplementary material: File

Carvalho et al. supplementary material

Carvalho et al. supplementary material 2

Download Carvalho et al. supplementary material(File)
File 23 KB