Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T02:42:25.993Z Has data issue: false hasContentIssue false

THE MARINE RESERVOIR EFFECT: A CASE STUDY OF ARCHAEOLOGICAL SITES AT GUANABARA BAY, RIO DE JANEIRO, BRAZIL

Published online by Cambridge University Press:  28 October 2022

Ronaldo Janvrot Vivone
Affiliation:
Divisão de Radioproteção Ambiental e Ocupacional, Instituto de Radioproteção e Dosimetria, Rio de Janeiro, RJ, 22783-127, Brazil
Zenildo Lara de Carvalho
Affiliation:
Divisão de Radioproteção Ambiental e Ocupacional, Instituto de Radioproteção e Dosimetria, Rio de Janeiro, RJ, 22783-127, Brazil
Ricardo Tadeu Lopes
Affiliation:
Programa de Engenharia Nuclear, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21945-970, Brazil
Roberto Ventura dos Santos
Affiliation:
Universidade de Brasília, Instituto de Geociências, Campus Universitário Darcy Ribeiro CEP 70910-900 Brasília, DF, Brazil
José Marcus Godoy*
Affiliation:
Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro-RJ, 22453-900, Brazil
*
*Corresponding author. Email: [email protected]

Abstract

This study applied, radiocarbon dating to charcoal and mollusk samples from Sernambetiba and Amourins archaeological sites in the Northeast region of Guanabara Bay, in the state of Rio de Janeiro, Brazil, to assess the marine radiocarbon reservoir effect (MRE) of this area, being applied for the correction of the marine samples ages. The results for this estuarine system were ΔR = –87 ± 90 14C yr and ΔR = –244 ± 70 14C yr for 3970 ± 70 14C yr BP and 2357 ± 60 14C yr BP, respectively. Based on these findings, calibrated 14C ages were calculated for Sernambetiba and Amourins shell mound sites surrounding the bay. Marine samples from the Guapi site were analyzed and only their radiocarbon ages presented because there were no paired terrestrial samples for the MRE assessment. These results are coherent with previously published values also derived from archaeological samples for the Rio de Janeiro state coastal region and contribute to the interpretation of human occupation of the region during the Holocene.

Type
Case Study
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, E, Macario, K, Souza, R, Pimenta, A, Douka, K, Oliveira, F, Chanca, I, Angulo, R. 2015a. Radiocarbon reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quaternary Geochronology 29:3035.CrossRefGoogle Scholar
Alves, E, Macario, K, Souza, R, Aguilera, O, Goulart, AC, Scheel-Ybert, R, Bachelet, C, Carvalho, C, Oliveira, F, Douka, K. 2015b. Marine reservoir corrections on the southeastern coast of Brazil: paired samples from the Saquarema shell-mound. Radiocarbon 57(4):517525.CrossRefGoogle Scholar
Alves, EQ, Macario, K, Ascough, P, Bronk Ramsey, C. 2018. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects. Reviews of Geophysics 56(1):278305.CrossRefGoogle Scholar
Alves, EQ, Macario, KD, Spotorno, P, Oliveira, FM, Muniz, MC, Fallon, S, Souza, R, Salvador, A, Eschner, A, Ramsey, CB. 2021. Nineteenth-century expeditions and the radiocarbon marine reservoir effect on the Brazilian coast. Geochimica et Cosmochimica Acta 297:276287.CrossRefGoogle Scholar
Amador, E. 1997. Baía de Guanabara e ecossistemas periféricos: homem e natureza. Rio de Janeiro. 539 p.Google Scholar
Angulo, RJ, Souza, MC, Reimer, PJ, Sasaoka, SK. 2005. Reservoir effect of the southern and southeastern Brazilian coast. Radiocarbon 47:6773.CrossRefGoogle Scholar
Barbosa, M. 2007. A ocupação pré-colonial da região dos lagos, RJ: sistema de assentamento e relações intersocietais entre grupos sambaquianos e grupos ceramistas tupinambá da tradição uma [doctoral thesis]. São Paulo: Universidade de São Paulo.Google Scholar
Baydoun, R, Samad, O, Aoun, M, Nsouli, B, Younes, G. 2014. Set-up, optimization and first set of samples at the Radiocarbon Laboratory in Lebanon. Geochronometria 41(1):8791.CrossRefGoogle Scholar
Beramendi-Orosco, LE, Gonzalez-Hernandez, G, Urrutia-Fucugauchi, J, Morton-Bermea, O. 2006. Radiocarbon Laboratory at the National Autonomous University of Mexico: first set of samples and new 14C internal reference material. Radiocarbon 48(3):485491.CrossRefGoogle Scholar
Berredo, AL, Gaspar, MD, Ramos, RR, Bianchini, GF. 2020. Ritual funerário no sambaqui de Amourins (Guapimirim/RJ): atividades de preparação do terreno para receber o corpo. Revista de Arqueologia 33(1):7897.CrossRefGoogle Scholar
Bianchini, G. 2015. Por entre corpos e conchas: prática social e arquitetura de um sambaqui. Doctor Thesis. Universidade Federal do Rio de Janeiro. 170 p.Google Scholar
Bianchini, GF, Gaspar, MD, De Blasis, P, Scheel-Ybert, R. 2011. Processo de formação do sambaqui Jabuticabeira-II: interpretações através da análise estratigráfica de vestígios vegetais carbonizados. Revista do Museu de Arqueologia e Etnologia, São Paulo 21:5169.Google Scholar
Borges, DDS. 2015. Prepare o terreno, vou construir: Estudo do processo de formação do sambaqui do Guapi [unpublished master’s thesis]. Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro.Google Scholar
Bronić, IK, Horvatinčić, N, Barešić, J, Obelić, B. 2009. Measurement of 14C activity by liquid scintillation counting. Applied Radiation and Isotopes 67(5):800804.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Carvalho, C, Macario, K, De Oliveira, MI, Oliveira, F, Chanca, I, Alves, E, Souza, R, Aguilera, O, Douka, K. 2015. Potential use of archaeological snail shells for the calculation of local marine reservoir effect. Radiocarbon 57(3):459467.Google Scholar
Castro, JW, Seoane, JC, Fernandes, D, Cabral, CL, da Cunha, AM, Malta, JV, Miguel, LL, de Oliveira, CA, de Oliveira, PS, de Souza Tamega, FT. 2021. Relative sea-level curve during the Holocene in Rio de Janeiro, Southeastern Brazil: a review of the indicators-RSL, altimetric and geochronological data. Journal of South American Earth Sciences 10:103619.CrossRefGoogle Scholar
Castro, JWA, Suguio, K, Cunha, AM, Dias, FF. 2014. Sea-level fluctuations and coastal evolution in the state of Rio de Janeiro, southeastern Brazil. Anais da Academia Brasileira de Ciências 86:671683.CrossRefGoogle Scholar
Dettman, DL, Mitchell, DR, Huckleberry, G, Foster, MS. 2015. 14C and marine reservoir effect in archaeological samples from the northeast Gulf of California. Radiocarbon 57(5):785793.CrossRefGoogle Scholar
Diffenbaugh, NS, Sloan, LC, Snyder, MA. 2003. Orbital suppression of wind-driven upwelling in the California Current at 6 ka. Paleoceanography 18:1051.CrossRefGoogle Scholar
Evin, J, Marechal, J, Pachiaudi, C, Puissegur, JJ. 1980. Conditions involved in dating terrestrial shells. Radiocarbon 22:545555.CrossRefGoogle Scholar
Fischer, A, Olsen, J. 2021. The Nekselø Fish Weir and marine reservoir effect in Neolithization Period Denmark. Radiocarbon 63:805820.CrossRefGoogle Scholar
Gaspar, MD. 1991. Aspectos da organização social de pescadores-coletores: região compreendida entre a Ilha Grande e o delta do Paraíba do Sul, Rio de Janeiro [doctoral thesis]. Universidade de São Paulo. 364 p.Google Scholar
Gaspar, M, Klokler, DM, Bianchini, GF. 2013. Arqueologia estratégica: abordagens para o estudo da totalidade e construção de sítios monticulares. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas 8:517833.Google Scholar
Gaspar, M, Klokler, D, De Blasis, P. 2011. Traditional fishing, mollusk gathering, and the shell mound builders of Santa Catarina, Brazil. Journal of Ethnobiology 31:188212.CrossRefGoogle Scholar
Gaspar, M, Klokler, D, DeBlasis, P. 2014. Were sambaqui people buried in the trash? The cultural dynamics of Shell-matrix sites. Albuquerque (NM): University of New Mexico Press. p. 91100.Google Scholar
Gaspar, M, Klokler, D, Sheel-Ybert, R, Bianchini, GF. 2013. Sambaqui de Amourins: mesmo sítio, perspectivas diferentes. Arqueologia de um sambaqui 30 anos depois/Amourins sambaqui: same site, different perspectives. Sambaqui archaeology 30 years later. Revista del Museo de Antropología 6:7–20.Google Scholar
Goodfriend, GA, Flessa, KW. 1997. Radiocarbon reservoir ages in the Gulf of California: roles of upwelling and flow from the Colorado River. Radiocarbon 39:139148.CrossRefGoogle Scholar
Goodfriend, GA, Stipp, JJ. 1983. Limestone and the problem of radiocarbon dating of land-snail shell carbonate. Geology 11:575577.2.0.CO;2>CrossRefGoogle Scholar
Goslar, T, Pazdur, MF. 1985. Contamination studies on mollusk shell samples. Radiocarbon 27:3342.CrossRefGoogle Scholar
Hadden, CS, Cherkinsky, A. 2015. 14C variations in pre-bomb nearshore habitats of the Florida Panhandle, USA. Radiocarbon 57(3):469479.CrossRefGoogle Scholar
Head, J, Jones, R, Allen, J. 1983. Calculation of the “Marine reservoir effect” from the dating of shell-charcoal paired samples from an Aboriginal Midden on Great Glennie Island, Bass Strait. Australian Archaeology 12(17):99112.CrossRefGoogle Scholar
Heaton, TJ, Köhler, P, Butzin, M, Bard, E, Reimer, RW, Austin, WE, Ramsey, CB, Grootes, PM, Hughen, KA, Kromer, B, Reimer, PJ. 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62(4):779820.CrossRefGoogle Scholar
Hogg, AG, Heaton, TJ, Hua, Q, Palmer, JG, Turney, CS, Southon, J, et al. 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62(4):759778.CrossRefGoogle Scholar
Klokler, D. 2014. A ritually constructed shell mound. The cultural dynamics of Shell-matrix sites. Albuquerque (NM): University of New Mexico Press. p. 151162.Google Scholar
Klokler, D, Gaspar, MD, Scheel-Ybert, R. 2018. Why clam? Shell mound construction in southern Brazil. Journal of Archaeological Science: Reports.Google Scholar
Latorre, C, De Pol-Holz, R, Carter, C, Santoro, C.M. 2017. Using archaeological shell middens as a proxy for past local coastal upwelling in northern Chile. Quaternary International 427:128136.CrossRefGoogle Scholar
Lindauer, S, Santos, GM, Steinhof, A, Yousif, E, Phillips, C, Jasim, SA, Uerpmann, HP, Hinderer, M. 2017. The local marine reservoir effect at Kalba (UAE) between the Neolithic and Bronze Age: an indicator of sea level and climate changes. Quaternary Geochronology 42:105116.CrossRefGoogle Scholar
Lougheed, BC, Filipsson, HL, Snowball, I. 2013. Large spatial variations in coastal 14C reservoir age–a case study from the Baltic Sea. Climate of the Past 9(3):10151128.CrossRefGoogle Scholar
Maboya, ML, Meadows, ME, Reimer, PJ, Backeberg, BC, Haberzettl, T. 2018. Late Holocene marine radiocarbon reservoir correction for the southern and eastern coasts of South Africa. Radiocarbon 60(2):571582.CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Trindade, DC, Decco, J, Lima, TA, Aguilera, OA, Marques, NA, Alves, EQ, Oliveira, FM, Chanca, IS, et al. 2014. Chronological model of a Brazilian Holocene shellmound (Sambaqui de Tarioba, Rio de Janeiro, Brazil). Radiocarbon 56:489499.CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, EP, Douka, K, Decco, J, Trindade, DC. 2015. Marine reservoir effect on the southeastern coast of Brazil: results from the Tarioba shell mound paired samples. Journal of Environmental Radioactivity 143:1419.CrossRefGoogle Scholar
Macario, KD, Alves, EQ, Chanca, IS, Oliveira, FM, Carvalho, C, Souza, R, Aguilera, O, Tenório, MC, Rapagnã, LC, Douka, K, Silva, E. 2016. The Usiminas shell mound on the Cabo Frio Island: marine reservoir effect in an upwelling region on the coast of Brazil. Quaternary Geochronology 35:3642.CrossRefGoogle Scholar
Petchey, F. 2020. New evidence for a mid-to late-Holocene change in the marine reservoir effect across the South Pacific Gyre. Radiocarbon 62(1):127139.CrossRefGoogle Scholar
Pinto, DC. 2009. Concha sobre concha: construindo sambaquis e a paisagem no Recôncavo da Baía de Guanabara (doctoral dissertation). Dissertação de Mestrado em Arqueologia. Museu Nacional. Universidade Federal do Rio de Janeiro.Google Scholar
Pessenda, LCR, Camargo, PB. 1991. Datações radiocarbônicas de amostras de interesse arqueológico e geológico por espectrometria de cintilação líquida de baixa radiação de fundo. Química Nova 14:98103.Google Scholar
Sikes, EL, Cook, MS, Guilderson, TP. 2016. Reduced deep ocean ventilation in the Southern Pacific Ocean during the last glaciation persisted into the deglaciation. Earth and Planetary Science Letters 438:130138.CrossRefGoogle Scholar
Soares, AM, Martins, JM. 2010. Radiocarbon dating of marine samples from Gulf of Cadiz: the reservoir effect. Quaternary International 221(1–2):912.CrossRefGoogle Scholar
Souza, SM, Liryo, A, Bianchini, GF, Gaspar, MD. 2012. Sambaqui do Amourins: mortos para mounds? Revista de Arqueologia 25(2):84103.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35:137189.Google Scholar
Stuiver, M, Polach, HA. 1977. Discusion: reporting of 14C data. Radiocarbon 19(2):355363.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:11271151.CrossRefGoogle Scholar
Svyatko, SV, Mertz, IV, Reimer, PJ. 2015. Freshwater reservoir effect on redating of Eurasian steppe cultures: first results for Eneolithic and Early Bronze Age northeast Kazakhstan. Radiocarbon 57(4):625644.Google Scholar
Ulm, S. 2002. Marine and estuarine reservoir effects in central Queensland, Australia: Determination of ΔR values. Geoarchaeology 17:319348.Google Scholar
Wood, RE, Higham, TF, Buzilhova, A, Suvorov, A, Heinemeier, J, Olsen, J. 2013. Freshwater radiocarbon reservoir effects at the burial ground of Minino, northwest Russia. Radiocarbon 55(1):163177.CrossRefGoogle Scholar
Yates, T. 1986. Studies of non-marine mollusks for the selection of shell samples for radiocarbon dating. Radiocarbon 28:457463.CrossRefGoogle Scholar
Supplementary material: File

Vivone et al. supplementary material

Vivone et al. supplementary material

Download Vivone et al. supplementary material(File)
File 16 KB