River mouths on the steep, high-relief coast of the French Riviera exhibit thick sequences of Holocene marine, estuarine, deltaic, and river channel-floodplain sediments that overlie basal fluvial Pleistocene gravel. Gravel is uncommon in most of the early to middle Holocene aggradational-progradational marine, estuarine, deltaic sediments, despite an ample supply from rock units in the steep adjoining uplands. River-mouth gravel is common only in late Holocene river channels and in barrier beaches perched on finer-grained nearshore sediments. Neither downslope grain-size fining on alluvial fans nor sediment stacking patterns during sea-level (base-level) rise readily account for the lack of early to middle Holocene gravel in the river-mouth sediment wedges. Holocene sea-level rise led to the storage of fine-grained sediments in shallow marine, estuarine, and deltaic environments in the present coastal zone. We infer that humid temperate conditions, a dense forest cover, landscape stabilization, and a regular quiescent river flow regime associated with the Atlantic climatic optimum limited gravel supply in the adjoining catchments and gravel entrainment downstream during the early Holocene. Sea-level stabilization in the middle and late Holocene coincided with a marked change in bioclimatic conditions toward the present Mediterranean-type regime, which is characterized by a less dense forest cover, soil erosion, and episodic catastrophic floods. The late Holocene was thus a time of downstream bedload channel aggradation, fine-grained floodplain and paludal sedimentation, and seaward flushing of clasts leading to the formation and consolidation of the gravel barrier beaches that bound the rivermouths and embayments.