Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T11:50:54.354Z Has data issue: false hasContentIssue false

Warm Period Growth of Travertine during the Last Interglaciation in Southern Germany

Published online by Cambridge University Press:  20 January 2017

Norbert Frank
Affiliation:
Heidelberger Akademie der Wissenschaften, Forschungsstelle Radiometrie, Im Neuenheimer Feld 229, D-69120, Heidelberg, Germany, E-mail: [email protected]
Margarethe Braum
Affiliation:
Heidelberger Akademie der Wissenschaffen, Forschungsstelle Radiometrie, Im Nenenheimer Feld 229, D-69120, Heidelberg, Germany
Ulrich Hambach
Affiliation:
Geologisches Institut der Universität zu Köln, Zülpicher Strasse 49a, D-50674, Cologne, Germany
Augusto Mangini
Affiliation:
Heidelberger Akademie der Wissenschaften, Forschungsstelle Radiometrie, Im Neuenheimer Feld 229, D-69120, Heidelberg, Germany
Günther Wagner
Affiliation:
Heidelberger Akademie der Wissenschaften, Forschungsstelle Archäometrie, Sanpfercheckweg 1, D-69126, Heidelberg, Germany

Abstract

Late-Quaternary travertine at two sites near Stuttgart formed entirely during interglacial periods. The travertine contains structures from growth induced by bacteria, and such structures have been dated by 230Th/U mass spectrometry. The resulting ages from both sites imply growth episodes of short duration, with growth rates up to 5 mm yr−1, at 99,800 ± 1300 yr B.P. (2σ n = 8) and 105,900 ± 1300 yr B.P. (2σ n = 7). These episodes were likely part of marine isotope stage (MIS) 5.3. Deposition of silt interrupted travertine growth at one of the sites ∼105,000 yr B.P. Likely correlatives of this silt are the St. Germain I-B stade recorded in the Grand Pile peat bog and a cold episode ∼1000 yr long recorded by δ18O values in the GRIP ice core. Travertine also formed during stage 5.5 (∼115,000 yr) and during the early Holocene. We found no evidence for travertine accumulation in stages 2, 3, 4, and 5.1. At both sites, the Sr/U ratio and the initial 234U/238U activity ratio resemble those of modern spring water. However, the sites differ in the chemical composition of spring water and in stratigraphic sequence of travertine accumulation.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., Rougerie, F. (1996). Sea level record from Tahiti corals and the timing of deglacial meltwater discharge. Nature,382, 241244., Google Scholar
Baker, A., Smart, P.L., Ford, D.C. (1993). Northwest european palaeoclimate as indicated by growth frequency variation of secondary calcite deposits. Palaeogeography, Paleoclimatology, Palaeoecology,100, 291301., Google Scholar
Berger, A.L., Loutre, M.F. (1991). Insolation values for climate for the last 10 million years. Quaternary Science Reviews,10, 297317., Google Scholar
Bollhöfer, A., Eisenhauer, A., Frank, N., Pech, D., Mangini, A. (1996). Thorium and uranium isotopes in a manganese nodule from the Peru basin determined by alpha spectrometry and thermal ionization mass spectrometry (TIMS): Are manganese supply and growth related to climate?. Geol. Rundsch.,85, 577585., Google Scholar
Braun, M., Frank, N., Goppelsröder, A., Kind, C.-J., Mangini, A., Müller, K.P., Niederhoefer, H.-J., Wagner, G., Ziegler, R. (1998). Deckerstrasse”—Eine mittelpaläolitische Travertin-Fundstelle in Stuttgart-Bad Cannstatt. Fundberichte Baden-Württembergs,22, 1344., Google Scholar
Burns, S., Matter, A., Frank, N., Mangini, A. (1998). Speleothem-based paleoclimate record from Northern Oman. Geology,26, 499502., Google Scholar
Chen, J.H., Edwards, R.L., Wasserburg, G.J. (1986). 238U, 234U, and 232Th in seawater. Earth and Planetary Science Letters,80, 241251., Google Scholar
Dansgard, W., Johnson, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., Bond, G. (1993). Evidence for general instability of past climate from 250-kyr ice-core record. Nature,364, 218220., Google Scholar
Edwards, R.L., Chen, J.H., Ku, T.L., Wasserburg, G.J. (1987). Precise timing of the last interglacial period from mass spectrometric determination of Th-230 in corals. Science,236, 15471553., CrossRefGoogle Scholar
Edwards, R.L., Warren Beck, J., Burr, G.S., Donahue, D.J., Chappell, J.M.A., Bloom, A.L., Druffel, E.R.M., Taylor, F.W. (1993). A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science,260, 962967., Google Scholar
Eisenhauer, A., Zhu, Z.R., Collins, L.B., Eichstädter, R. (1996). The last interglacial sea level change: New evidence from the Abrolhos islands, West Australia. Geol. Rundsch.,85, 606614., Google Scholar
Ford, T.D., Pedley, H.M. (1996). A review of tufa and travertine deposits of the world. Earth-Science Reviews,41, 117175., Google Scholar
Goudie, A.S., Viles, H.A., Pentecost, A. (1993). The late Holocene tufa decline in Europe. The Holocene,3, 181186., CrossRefGoogle Scholar
Grün, R., Brunnacker, K., Hennig, G.J. (1982). 230Th/234U-Daten mittel-und jungpleistozäner Travertine im Raum Stuttgart. Jber. Mitt. Oberrhein. Geol. Ver.,64, 201211., Google Scholar
Guiot, J., Pons, A., de Beaulieu, J.L., Reille, M. (1989). A 140,000-year continental climate reconstruction from the two European pollen records. Nature,338, 309313., Google Scholar
Harmon, R.S., Schwarcz, H.P., O'Neil, J.R. (1979). D/H ratios in speleothem fluid inclusions: A guide to variations in the isotopic composition of meteoric precipitation?. Earth and Planetary Science Letters,42, 254266., Google Scholar
Ivanovich, M., Harmon, R.S. (1992). Uranium Series disequilibrium: Applications of Earth, Marine, and Environmental Science. Clarendon, Oxford.Google Scholar
Kaufman, A. (1992). An evaluation of several methods for determining 230Th/U ages in impure carbonates. Geochimica et Cosmochimica Acta,57, 23032317., Google Scholar
Kaufman, A., Broecker, W. (1965). Comparison of 230Th and 14C Ages for carbonate materials from Lakes Lahotan and Bonneville. Journal of Geophysical Research,70, 40394054., CrossRefGoogle Scholar
Koban, C.G. (1993). Faziesanalyse und Genese der quartären Sauerwasserkalke von Stuttgart, Baden Württemberg. Profil,5, 47118., Google Scholar
Lin, J.C., Broecker, W.S., Anderson, R.F., Hemming, S., Rubenstone, J.L., Bonani, G. (1996). New 230Th/U and 14C ages from Lake Lahotan carbonates, Nevada, USA, and a discussion of the origin of initial thorium. Geochimica et Cosmochimica Acta,60, 28172832., Google Scholar
Ludwig, K.R., Simmons, K.R., Szabo, B.S., Winograd, L.J., Landwehr, J.M., Riggs, A.C., Hoffman, R.J. (1992). Mass spectrometric 230Th-234U-238U dating of the Devils Hole Calcite Vein. Science,258, 284287., Google Scholar
Ludwig, K.R., Titterington, D.M. (1994). Calculation of 230Th/U isochrons, ages and errors. Geochimica et Cosmochimica Acta,58, 50315042., Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackelton, J.N. (1987). Age dating and the orbital theory of the Ice Ages: Development of a high-resolution 0 to 300,000 year chronostratigraphy. Quaternary Research,27, 129., Google Scholar
McDermott, F., Grün, R., Stringer, C.B., Hawkesworth, C.J. (1993). Mass-spectrometric U-series dates for Israeli Neanderthal/early modern hominid sites. Nature,363, 252255., Google Scholar
Pedley, M.H. (1994). Prokaryote-microphyte biofilms and tufas: A sedimentation perspective. Darmstädter Beiträge zur Naturgeschichte,4, 4560., Google Scholar
Pentecost, A. (1996). The Quaternary travertine deposits of Europe and Asia Minor. Quaternary Science Reviews,14, 10051027., CrossRefGoogle Scholar
Reiff, W. (1986). Die Sauerwasserkalke von Stuttgart. Fundberichte aus Baden Württemberg,11, 224., Google Scholar
Reille, M., de Beaulieu, J.L. (1990). Pollen analysis of a long upper Pleistocene continental sequence in a Velay maar (Massif Central, France). Palaeogeography, Palaeoclimatology, Palaeoecology,80, 3548., Google Scholar
Roberts, M.S., Smart, P.L., Baker, A. (1998). Annual trace element variation in a Holocene speleothem. Earth and Planetary Science Letters,154, 237246., Google Scholar
Schweigert, G. (1991). Die Flora der Eem-interglazialen Travertine von Stuttgart-Untertuerkheim (Baden-Wuerttemberg). Stuttgarter Beitraege zur Naturkunde, Serie B,178, 143., Google Scholar
Sturchio, N.P., Pierce, K.L., Murrel, M.T., Sorey, M.L. (1994). Uranium-series ages of travertines and timing of the Last Glaciation in the northern Yellostone Area, Wyoming–Montana. Quaternary Research,41, 265277., Google Scholar
Taylor, D.M., Griffiths, H.I., Pedley, H.M., Prince, I. (1994). Radiocarbon-dated Holocene pollen and ostracod sequence from barrage tufa-dammend fluvial systems in the White Peak, Derbyshire, UK. The Holocene,4, 356364., Google Scholar
Ufrecht, W.. Das Mineral- und Heilwasser von Stuttgart-Bad Cannstatt und Berg-eine Einfuehrung in die Geologie, Geohydraulik und Hydrochemie des Systems. Ufrecht, W., Einsele, G. (1994). Das Mineral-und Heilwasser von Stuttgart. Schriftenreihe des Amtes für Umweltschutz, Stuttgart.1348., Google Scholar
Wedepohl, K.H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta,59, 12171232., Google Scholar
Woillard, G.M. (1976). Grande Pile Peat Bog: A continuous pollen record for the last 140,000 years. Quaternary Research,9, 121., Google Scholar