Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T04:35:31.729Z Has data issue: false hasContentIssue false

Variations in late Quaternary wind intensity from grain-size partitioning of loess deposits in the Nenana River Valley, Alaska

Published online by Cambridge University Press:  24 March 2017

Lyndsay M. DiPietro*
Affiliation:
Department of Geosciences, Baylor University, One Bear Place #97354, Waco, Texas 76798-7354, USA
Steven G. Driese
Affiliation:
Department of Geosciences, Baylor University, One Bear Place #97354, Waco, Texas 76798-7354, USA
Tyler W. Nelson
Affiliation:
Department of Statistical Science, Baylor University, One Bear Place #97140, Waco, Texas 76798, USA
Jane L. Harvill
Affiliation:
Department of Statistical Science, Baylor University, One Bear Place #97140, Waco, Texas 76798, USA
*
*Corresponding author at: Department of Geosciences, Baylor University, One Bear Place #97354, Waco, Texas 76798-7354, USA. E-mail address: [email protected] (L.M. DiPietro).

Abstract

A high-resolution column of 57 loess samples was collected from the Dry Creek archaeological site in the Nenana River Valley in central Alaska. Numerical grain-size partitioning using a mixed Weibull function was performed on grain-size distributions to obtain a reconstructed record of wind intensity over the last ~15,000 yr. Two grain-size components were identified, one with a mode in the coarse silt range (C1) and the other ranging from medium to very coarse sand (C2). C1 dominates most samples and records regional northerly winds carrying sediment from the Nenana River. These winds were strong during cold intervals, namely, the Carlo Creek glacial readvance (14.2–14 ka), a late Holocene Neoglacial period (4.2–2.7 ka), and recent glacier expansion; weak during the Allerød (14–13.3 ka) and Younger Dryas (12.9–11.7 ka); and variable during the Holocene thermal maximum (11.4–9.4 ka). Deposition of C2 was episodic and represents locally derived sand deposited by southerly katabatic winds from the Alaska Range. These katabatic winds occurred mainly prior to 12 ka and after 4 ka. This study shows that numerical grain-size partitioning is a powerful tool for reconstructing paleoclimate and that it can be successfully applied to Alaskan loess.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Finney, B.P., Edwards, M.E., Kelts, K.R., 2000. Lake-level reconstruction and paleohydrology of Birch Lake, central Alaska, based on seismic reflection profiles and core transects. Quaternary Research 53, 154166.Google Scholar
An, Z., Kukla, G., Porter, S.C., Xiao, J., 1991. Late Quaternary dust flow on the Chinese loess plateau. Catena 18, 125132.Google Scholar
Anderson, L., Abbott, M.B., Finney, B.P., 2001. Holocene climate inferred from oxygen isotope ratios in lake sediments, central Brooks Range, Alaska. Quaternary Research 55, 313321.Google Scholar
Anderson, P.M., Lozhkin, A.V., Eisner, W.R., Kozhevnikova, M.V., Hopkins, D.M., Brubaker, L.B., Colinvaux, P.A., 1994. Two late Quaternary pollen records from south-central Alaska. Géographie physique et Quaternaire 48, 131143.Google Scholar
Ashley, G.M., 1978. Interpretation of polymodal sediments. Journal of Geology 86, 411421.Google Scholar
Bagnold, R.A., Barndorff-Nielsen, O., 1980. The pattern of natural size distributions. Sedimentology 27, 199207.Google Scholar
Bartlein, P.J., Anderson, P.M., Edwards, M.E., McDowell, P.F., 1991. A framework for interpreting paleoclimatic variations in eastern Beringia. Quaternary International 10, 7383.Google Scholar
Begét, J.E., 2001. Continuous Late Quaternary proxy climate records from loess in Beringia. Quaternary Science Reviews 20, 499507.CrossRefGoogle Scholar
Begét, J.E., Bigelow, N., Powers, W.R., 1991. Reply to the comment of C. Waythomas and D. Kaufmann. Quaternary Research 36, 334338.Google Scholar
Begét, J.E., Hawkins, D.B., 1989. Influence of orbital parameters on Pleistocene loess deposition in central Alaska. Nature 337, 151153.CrossRefGoogle Scholar
Begét, J.E., Stone, D.B., Hawkins, D.B., 1990. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary. Geology 18, 4043.2.3.CO;2>CrossRefGoogle Scholar
Berger, G.W., 1987. Thermoluminescence dating of the Pleistocene Old Crow tephra and adjacent loess, near Fairbanks, Alaska. Canadian Journal of Earth Sciences 24, 19751984.CrossRefGoogle Scholar
Berger, G.W., 2003. Luminescence chronology of late Pleistocene loess-paleosol and tephra sequences near Fairbanks, Alaska. Quaternary Research 60, 7083.Google Scholar
Berger, G.W., Péwé, T.L., Westgate, J.A., Preece, S.J., 1996. Age of Sheep Creek tephra (Pleistocene) in central Alaska from thermoluminescence dating of bracketing loess. Quaternary Research 45, 263270.CrossRefGoogle Scholar
Bigelow, N., Begét, J., Powers, R., 1990. Latest Pleistocene increase in wind intensity recorded in eolian sediments from central Alaska. Quaternary Research 34, 160168.Google Scholar
Bigelow, N.H., Edwards, M.E., 2001. A 14,000 yr paleoenvironmental record from Windmill Lake, Central Alaska: lateglacial and Holocene vegetation in the Alaska range. Quaternary Science Reviews 20, 203215.Google Scholar
Bigelow, N.H., Powers, W.R., 1994. New AMS ages from the Dry Creek Paleoindian site, central Alaska. Current Research in the Pleistocene 11, 114116.Google Scholar
Bigelow, N.H., Powers, W.R., 2001. Climate, vegetation, and archaeology 14,000–9000 cal yr B.P. in central Alaska. Arctic Anthropology 38, 171195.Google Scholar
Blaauw, M., 2010. Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.Google Scholar
Calkin, P.E., 1988. Holocene glaciation of Alaska (and adjoining Yukon Territory, Canada). Quaternary Science Reviews 7, 159184. http://dx.doi.org/10.1016/0277-3791(88)90004-2.Google Scholar
Daigle, T.A., Kaufman, D.S., 2009. Holocene climate inferred from glacier extent, lake sediment and tree rings at Goat Lake, Kenai Mountains, Alaska, USA. Journal of Quaternary Science 24, 3345.CrossRefGoogle Scholar
Deng, C., Zhu, R., Jackson, M.J., Verosub, K.L., Singer, M.J., 2001. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: a pedogenesis indicator. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26, 873878.Google Scholar
Dortch, J.M., Owen, L.A., Caffee, M.W., Li, D., Lowell, T.V., 2010. Beryllium-10 surface exposure dating of glacial successions in the central Alaska Range. Journal of Quaternary Science 25, 12591269.Google Scholar
Graf, K.E., Bigelow, N.H., 2011. Human response to climate during the Younger Dryas chronozone in central Alaska. Quaternary International 242, 434451. http://dx.doi.org/10.1016/j.quaint.2011.04.030.Google Scholar
Graf, K.E., DiPietro, L.M., Krasinski, K.E., Gore, A.K., Smith, H.L., Culleton, B.J., Kennett, D.J., Rhode, D., 2015. Dry Creek revisited: new excavations, radiocarbon ages, and site formation inform on the peopling of eastern Beringia. American Antiquity 80, 671694.CrossRefGoogle Scholar
Harding, J.P., 1949. The use of probability paper for the graphical analysis of polymodal frequency distributions. Journal of the Marine Biological Association of the United Kingdom 28, 141153.Google Scholar
Hatfield, R.G., Maher, B.A., 2009. Fingerprinting upland sediment sources: particle size-specific magnetic linkages between soils, lake sediments and suspended sediments. Earth Surface Processes and Landforms 34, 13591373. http://dx.doi.org/10.1002/esp.1824.Google Scholar
Hoffecker, J.F., Waythomas, C. F., Powers, W.R., 1988. Late glacial loess stratigraphy and archaeology in the Nenana Valley, central Alaska. Current Research in the Pleistocene 5, 8386.Google Scholar
Hopkins, D.M., 1982. Aspects of the paleogeography of Beringia during the late Pleistocene. In: Hopkins, D.M., Matthews, J.V., Jr., Schweger, C.E., Young, S.B. (Eds.), Paleoecology of Beringia. Academic Press, New York, pp. 328.Google Scholar
Hovan, S.A., Rea, D.K., Pisias, N.G., Shackleton, N.J., 1989. A direct link between the China loess and marine δ18O records: aeolian flux to the north Pacific. Nature 340, 296298.Google Scholar
Hu, F.S., Brubaker, L.B., Anderson, P.M., 1993. A 12 000 year record of vegetation change and soil development from Wien Lake, central Alaska. Canadian Journal of Botany 71, 11331142.Google Scholar
Jensen, B.J., Evans, M.E., Froese, D.G., Kravchinsky, V.A., 2016. 150,000 years of loess accumulation in central Alaska. Quaternary Science Reviews 135, 123.Google Scholar
Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., 2004. Holocene thermal maximum in the western Arctic (0–180 W). Quaternary Science Reviews 23, 529560.Google Scholar
Kaufman, D.S., Axford, Y.L., Henderson, A.C.G., McKay, N.P., Oswald, W.W., Saenger, C., Anderson, R.S., et al., 2016. Holocene climate changes in eastern Beringia (NW North America) – a systematic review of multi-proxy evidence. Quaternary Science Reviews 147, 312339. http://dx.doi.org/10.1016/j.quascirev.2015.10.021.Google Scholar
Kukla, G., Heller, F., Ming, L.X., Chun, X.T., Sheng, L.T., Sheng, A.Z., 1988. Pleistocene climates in China aged by magnetic susceptibility. Geology 16, 811814.Google Scholar
LaBrecque, T.S., Kaufman, D.S., 2016. Holocene glacier fluctuations inferred from lacustrine sediment, Emerald Lake, Kenai Peninsula, Alaska. Quaternary Research 85, 3443.Google Scholar
Lagroix, F., Banerjee, S.K., 2002. Paleowind directions from the magnetic fabric of loess profiles in central Alaska. Earth and Planetary Science Letters 195, 99112.Google Scholar
Lagroix, F., Banerjee, S.K., 2004. The regional and temporal significance of primary aeolian magnetic fabrics preserved in Alaskan loess. Earth and Planetary Science Letters 225, 379395.Google Scholar
Levy, L.B., Kaufman, D.S., Werner, A., 2004. Holocene glacier fluctuations, Waskey Lake, northeastern Ahklun Mountains, southwestern Alaska. Holocene 14, 185193.Google Scholar
Lim, J., Matsumoto, E., 2006. Bimodal grain-size distribution of aeolian quartz in a maar of Cheju Island, Korea, during the last 6500 years: its flux variation and controlling factor. Geophysical Research Letters 33, L21816. http://dx.doi.org/10.1029/2006GL027432.Google Scholar
Liu, X.M., Hesse, P., Beget, J., Rolph, T., 2001. Pedogenic destruction of ferrimagnetics in Alaskan loess deposits. Soil Research 39, 99115.Google Scholar
Liu, X.M., Hesse, P., Rolph, T., Begét, J.E., 1999. Properties of magnetic mineralogy of Alaskan loess: evidence for pedogenesis. Quaternary International 62, 93102.Google Scholar
Maher, B.A., Thompson, R., 1995. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quaternary Research 44, 383391.CrossRefGoogle Scholar
Middleton, G.V., 1976. Hydraulic interpretation of sand size distributions. Journal of Geology 84, 405426.Google Scholar
Mock, C.J., Bartlein, P.J., Anderson, P.M., 1998. Atmospheric circulation patterns and spatial climatic variations in Beringia. International Journal of Climatology 18, 10851104.Google Scholar
Muhs, D.R., Ager, T.A., Bettis, E.A. III, McGeehin, J., Been, J.M., Begét, J.E., Pavich, M.J., Stafford, T.W. Jr., Stevens, D.S.P., 2003. Stratigraphy and palaeoclimatic significance of Late Quaternary loess–palaeosol sequences of the Last Interglacial–Glacial cycle in central Alaska. Quaternary Science Reviews 22, 19471986.Google Scholar
Muhs, D.R., Ager, T.A., Skipp, G., Beann, J., Budahn, J., McGeehin, J.P., 2008. Paleoclimatic significance of chemical weathering in loess-derived paleosols of subarctic central Alaska. Arctic, Antarctic, and Alpine Research 40, 396411.Google Scholar
Muhs, D.R., Bettis, E.A., 2003. Quaternary loess-paleosol sequences as examples of climate-driven sedimentary extremes. Geological Society of America, Special Papers 370, 53–74.Google Scholar
Muhs, D.R., Budahn, J.R., 2006. Geochemical evidence for the origin of late Quaternary loess in central Alaska. Canadian Journal of Earth Sciences 43, 323337.Google Scholar
Muhs, D.R., Budahn, J.R., Skipp, G.L., McGeehin, J.P., 2016. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA. Aeolian Research 21, 6173.Google Scholar
Muhs, D.R., McGeehin, J.P., Beann, J., Fisher, E., 2004. Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska. Quaternary Research 61, 265276.Google Scholar
Park, C.-S., Hwang, S., Yoon, S.-O., Choi, J., 2014. Grain size partitioning in loess–paleosol sequence on the west coast of South Korea using the Weibull function. Catena 121, 307320.Google Scholar
Pendea, I.F., Gray, J.T., Ghaleb, B., Tantau, I., Badarau, A.S., Nicorici, C., 2009. Episodic build-up of alluvial fan deposits during the Weichselian Pleniglacial in the western Transylvanian Basin, Romania and their paleoenvironmental significance. Quaternary International 198, 98112.Google Scholar
Péwé, T.L., 1955. Origin of the upland silt near Fairbanks, Alaska. Geological Society of America Bulletin 66, 699724.Google Scholar
Péwé, T.L., Hopkins, D.M., Giddings, J.L. Jr., 1965. Quaternary geology and archaeology of Alaska. In: Wright, H.E., Jr., Frey, D.G. (Eds.), The Quaternary of the United States. Princeton University Press, Princeton, NJ, pp. 355374.Google Scholar
Porter, S.C., An, Z., 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.Google Scholar
Powers, W.R., Guthrie, R.D., Hoffecker, J.F., 1983. Dry Creek: Archeology and Paleoecology of a Late Pleistocene Alaskan Hunting Camp. Division of Life Sciences, University of Alaska Fairbanks, Fairbanks, Alaska.Google Scholar
Powers, W.R., Hoffecker, J.F., 1989. Late Pleistocene settlement in the Nenana Valley, central Alaska. American Antiquity 54, 263287.CrossRefGoogle Scholar
Preece, S.J., Westgate, J.A., Stemper, B.A., Péwé, T.L., 1999. Tephrochronology of late Cenozoic loess at Fairbanks, central Alaska. Geological Society of America Bulletin 111, 7190.2.3.CO;2>CrossRefGoogle Scholar
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653667. http://dx.doi.org/10.1016/0277-3791(95)00047-X.Google Scholar
R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E. et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Ritter, D.F., 1982. Complex river terrace development in the Nenana Valley near Healy, Alaska. Geological Society of America Bulletin 93, 346356.Google Scholar
Smalley, I., O’Hara-Dhand, K., Wint, J., Machalett, B., Jary, Z., Jefferson, I., 2009. Rivers and loess: the significance of long river transportation in the complex event-sequence approach to loess deposit formation. Quaternary International 198, 718.Google Scholar
Solomina, O.N., Bradley, R.S., Hodgson, D.A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A.N., Nesje, A., et al., 2015. Holocene glacier fluctuations. Quaternary Science Reviews 111, 934. http://dx.doi.org/10.1016/j.quascirev.2014.11.018.Google Scholar
Sun, D., Bloemendal, J., Rea, D.K., An, Z., Vandenberghe, J., Lu, H., Su, R., Liu, T., 2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena 55, 325340.Google Scholar
Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z., Su, R., 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology 152, 263277.Google Scholar
Sun, D., Su, R., Bloemendal, J., Lu, H., 2008. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: implications for variations in the East Asian winter monsoon and westerly atmospheric circulation. Palaeogeography, Palaeoclimatology, Palaeoecology 264, 3953.Google Scholar
Tarr, R.S., Martin, L., 1913. Glacial deposits of the continental type in Alaska. Journal of Geology 21, 289300.Google Scholar
Ten Brink, N.W., Waythomas, C.F., 1985. Late Wisconsin glacial chronology of the north-central Alaska Range: a regional synthesis and its implications for early human settlements. In: Powers, W.R. (Ed.), North Alaska Range Early Man Project. National Geographic Society Research Reports, No. 19. National Geographic Society, Washington, D.C., pp. 15–32.Google Scholar
Thorson, R.M., 1975. Late Quaternary History of the Dry Creek Area, central Alaska. University of Alaska, Fairbanks, M.S. Thesis. Google Scholar
Thorson, R.M., 2005. Artifact mixing at the Dry Creek site, interior Alaska. Anthropological Papers of the University of Alaska , New Series 4 no. 1, 110.Google Scholar
Thorson, R.M., Bender, G., 1985. Eolian deflation by ancient katabatic winds: a late Quaternary example from the north Alaska Range. Geological Society of America Bulletin 96, 702709.Google Scholar
Thorson, R.M., Hamilton, T.D., 1977. Geology of the Dry Creek site; a stratified Early Man site in interior Alaska. Quaternary Research 7, 149176.Google Scholar
Tsoar, H., Pye, K., 1987. Dust transport and the question of desert loess formation. Sedimentology 34, 139153.Google Scholar
Vandenberghe, J., 2013. Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth-Science Reviews 121, 1830. http://dx.doi.org/10.1016/j.earscirev.2013.03.001.Google Scholar
Vlag, P.A., Oches, E.A., Banerjee, S.K., Solheid, P.A., 1999. The paleoenvironmental-magnetic record of the Gold Hill steps loess section in central Alaska. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24, 779783.Google Scholar
Wahrhaftig, C., Black, R.F., 1958. Quaternary and Engineering Geology in the Central Part of the Alaska Range. U.S. Geological Survey Professional Paper 293. U.S. Government Printing Office, Washington, D.C.Google Scholar
Waythomas, C.F., Kaufman, D.S., 1991. Comment on: “Latest Pleistocene increase in wind intensity recorded in eolian sediments from central Alaska,” by N. Bigelow, J.E. Begét, and W.R. Powers. Quaternary Research 36, 329333.CrossRefGoogle Scholar
Westgate, J.A., Stemper, B.A., Péwé, T.L., 1990. A 3 my record of Pliocene-Pleistocene loess in, interior Alaska. Geology 18, 858861.Google Scholar
Xiao, J., Chang, Z., Si, B., Qin, X., Itoh, S., Lomtatidze, Z., 2009. Partitioning of the grain-size components of Dali Lake core sediments: evidence for lake-level changes during the Holocene. Journal of Paleolimnology 42, 249260.Google Scholar
Xiao, J., Porter, S.C., An, Z., Kumai, H., Yoshikawa, S., 1995. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr. Quaternary Research 43, 2229.Google Scholar
Supplementary material: File

DiPietro supplementary material

DiPietro supplementary material 1

Download DiPietro supplementary material(File)
File 63.5 KB
Supplementary material: File

DiPietro supplementary material

DiPietro supplementary material 2

Download DiPietro supplementary material(File)
File 32.3 KB