Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T04:29:04.422Z Has data issue: false hasContentIssue false

Variability of Indian monsoonal rainfall over the past 100 ka and its implication for C3–C4 vegetational change

Published online by Cambridge University Press:  20 January 2017

Shailesh Agrawal*
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, 721302, India
Prasanta Sanyal
Affiliation:
Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, 741252, India
Anindya Sarkar
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, 721302, India
Manoj Kumar Jaiswal
Affiliation:
Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, 741252, India
Koushik Dutta
Affiliation:
Large Lakes Observatory, University of Minnesota, Duluth, Duluth, MN 55812, USA
*
*Corresponding author at: Research Scholar, Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, WB, 721 302, India. Fax: + 91 322 228 2268. E-mail address:[email protected] (S. Agrawal).

Abstract

Oxygen and carbon isotope ratios of soil carbonate and carbon isotope ratios of soil organic matter (SOM) separated from three cores, Kalpi, IITK and Firozpur, of the Ganga Plain, India are used to reconstruct past rainfall variations and their effect on ambient vegetation. The δ18O values of soil carbonate (δ18OSC) analyzed from the cores range from −8.2 to −4.1‰. Using these variations in δ18OSC values we are able, for the first time, to show periodic change in rainfall amount between 100 and 18 ka with three peaks of higher monsoon at about 100, 40 and 25 ka. The estimation of rainfall variations using δ18O value of rainwater-amount effect suggests maximum decrease in rainfall intensity (~ 20%) during the last glacial maximum. The δ13C values of soil carbonate (δ13CSC) and SOM (δ13CSOM) range from −6.3 to + 1.6‰ and −28.9 to −19.4‰, respectively, implying varying proportions of C3 and C4 vegetations over the Ganga Plain during the last 100 ka. The comparison between monsoonal rainfall and atmospheric CO2 with vegetation for the time period 84 to 18 ka indicate that relative abundances of C3 and C4 vegetations were mainly driven by variations in monsoonal rainfall.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J., (1998). An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence. Oxford University Press, .CrossRefGoogle Scholar
Andrews, J.E., Singhvi, A.K., Kailath, A.J., Khun, R., Dennis, P.F., Tandon, S.K., Dhir, R.P., (1998). Do stable isotope data from calcrete record late Pleistocene monsoonal climate variation in the Thar Desert of India?. Quaternary Research 50, 240251.Google Scholar
Auclair, M., Lamothe, M., Hout, S., (2003). Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37, 487492.CrossRefGoogle Scholar
Barnola, J.M., Raynaud, D., Korotkevich, Y.S., Lorius, C., (1987). Vostok ice core provides 160,000 year record of atmospheric CO2 . Nature 329, 408414.Google Scholar
Benner, R., Fogel, M.L., Sprague, E.K., Hodson, R.E., (1987). Depletion of 13C in lignin and its implications for stable isotope studies. Nature 327, 708710.Google Scholar
Bhattacharya, S.K., Froehlich, K., Aggarwal, P.K., Kulkarni, K.M., (2003). Isotopic variation in Indian monsoon precipitation: records from Bombay and New Delhi. Geophysical Research Letters 30, 2285.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R., Strecker, M.R., (2005). Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33, 149152.Google Scholar
Cane, M.A., (1998). Climate change: a role for the Tropical Pacific. Science 282, 5961.Google Scholar
Cerling, T.E., (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229240.Google Scholar
Cerling, T.E., Quade, J., Wang, Y., Bowman, J.R., (1989). Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature 34, 138139.Google Scholar
Cerling, T.E., Harris, M.J., MacFadden, J.B., Leaky, G.M., Quade, J., Eisenmann, V., Ehleringer, R.J., (1997). Global vegetational change through the Miocene/Pliocene boundary. Nature 389, 153158.Google Scholar
Clemens, S., Prell, W.L., (1990). Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: eolian records from the lithogenic component of deep sea sediments. Paleoceanography 5, 109145.CrossRefGoogle Scholar
Clemens, S.C., Prell, W.L., Murray, D., Shimmield, G., Weedon, G., (1991). Forcing mechanisms of the Indian Ocean monsoon. Nature 353, 720725.Google Scholar
Clemens, S.C., Murray, D.W., Prell, W.L., (1996). Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 274, 943948.CrossRefGoogle ScholarPubMed
Clement, A.C., Seager, R., Cane, M.A., (1999). Orbital controls on the El Nino/Southern Oscillation and the tropical climate. Paleoceanography 14, 441456.CrossRefGoogle Scholar
Dansgaard, W., (1964). Stable isotope in precipitation. Tellus 16, 436467.CrossRefGoogle Scholar
DeCelles, P.G., Gray, M.B., Ridgway, K.D., Cole, R.B., Srivastava, P., Pequera, N., Pivnik, D.A., (1991). Kinematic history of a foreland uplift from Paleocene synorogenic conglomerate, Beartooth Range, Wyoming and Montana. Geological Society of America Bulletin 103, 14581475.2.3.CO;2>CrossRefGoogle Scholar
Ehleringer, J.R., (2005). The influence of atmospheric CO2, temperature, and water on the abundance of C3/C4 taxa. Ehleringer, J.R., Cerling, T.E., Dearing, M.D., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Springer, 214231.Google Scholar
Farrera, I., Harrison, S.P., Prentice, I.C., Ramstein, G., Guiot, J., Bartlein, P.J., Bonnefille, R., Bush, M., Cramer, W., Von Grafenstein, U., Holmgren, K., Hooghiemstra, H., Hope, G., Jolly, D., Lauritzen, S.E., Ono, Y., Pinot, S., Stute, M., Yu, G., (1999). Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data, vegetation, lake-levels and geochemistry. Climate Dynamics 15, 823856.Google Scholar
Feng, Z.D., Tang, L.Y., Ma, Y.Z., Zhai, Z.X., Wu, H.N., Li, F., Zou, S.B., Yang, Q.L., Wang, W.G., Derbyshire, E., Liu, K.B., (2007). Vegetation variations and associated environmental changes during marine isotope stage 3 in the western part of the Chinese Loess Plateau. Palaeogeography Palaeoclimatology Palaeoecology 246, 278291.Google Scholar
Galy, V., Francois, L., France-Lanord, C., Faure, P., Kudrass, H., Palhol, F., Singh, S.K., (2008). C4 plants decline in the Himalayan basin since the Last Glacial Maximum. Quaternary Science Reviews 27, 13961409.Google Scholar
Gibling, M.R., Tandon, S.K., Sinha, R., Jain, M., (2005). Discontinuity bounded alluvial sequences of the southern Ganga plains, India: aggradation and degradation in response to monsoonal strength. Journal of Sedimentary Research 75, 373389.CrossRefGoogle Scholar
Gibling, M.R., Sinha, R., Roy, N.G., Tandon, S.K., Jain, M., (2008). Quaternary fluvial and eolian deposits on the Belan River, India: paleoclimatic setting of Paleolithic to Neolithic archeological sites over the past 85,000 years. Quaternary Science Reviews 27, 391410.Google Scholar
Goni, M.A., Ruttenberg, K.C., Eglinton, T.I., (1997). Source and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389, 275278.Google Scholar
Herzschuh, U., (2006). Paleo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews 25, 163178.Google Scholar
Huang, Y., Bol, R., Harkness, D.D., Ineson, P., Eglinton, G., (1996). Postglacial variations in distributions, 13C and 14C contents of aliphatic hydrocarbons and bulk organic matter in three types of British acid upland soils. Organic Geochemistry 24, 273287.Google Scholar
Huang, Y., Street-Perrott, F.A., Perrott, R.A., Metzger, P., Eglinton, G., (1999). glacial–interglacial environmental changes inferred from molecular and compound specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochimica et Cosmochimica Acta 63, 13831404.Google Scholar
Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., Brenner, M., Moreland, M., Freeman, K.H., (2001). Climate change as the dominant control on glacial–interglacial variations in C3 and C4 plant abundance. Science 293, 16471651.Google Scholar
Huntley, D.J., Lamothe, M., (2001). Ubiquity of anomalous fading in K-feldspar and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38, 10931106.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., (1984). The orbital theory of Pleistocene climate: support from a revised chronology, of the marine δ18O record. Berger, A., Milankovitch and Climate, Part 1. Springer, New York. 269305.Google Scholar
Jain, M., Tandon, S.K., (2003). The fluvial response to the late Quaternary climate changes, western India. Quaternary Science Reviews 22, 22232235.Google Scholar
Jain, M., Tandon, S.K., Bhatt, S.C., (2004). Late Quaternary stratigraphic development in the lower Luni, Mahi and Sabarmati river basins, western India. Proceedings of the Indian Academy of Sciences – Earth and Planetary Sciences 113, 453471.Google Scholar
Jain, M., Jensen, B.L., Murray, A.S., Denby, P.M., Tsukamoto, S., Gibling, M.R., (2005). Revisiting TL: dose measurement beyond the OSL range using SAR. Ancient TL 23, 924.Google Scholar
Juyal, N., Raj, R., Maurya, D.M., Chamyal, L.S., Singhvi, A.K., (2000). Chronology of late Pleistocene environmental changes in the lower Mahi basin, western India. Journal of Quaternary Science 15, 501508.Google Scholar
Juyal, N., Chamyal, L.S., Bhandari, S., Bhushan, R., Singhvi, A.K., (2006). Continental record of the southwest monsoon during the last 130 ka: evidence from the southern margin of the Thar Desert, India. Quaternary Science Reviews 25, 26322650.CrossRefGoogle Scholar
Juyal, N., Pant, R.K., Basavaiah, N., Bhushan, R., Jain, M., Saini, N.K., Yadava, M.G., Singhvi, A.K., (2009). Reconstruction of Last Glacial to early Holocene monsoon variability from relict lake sediments of the higher central Himalaya, Uttrakhand, India. Journal of Asian Earth Sciences 34, 437449.Google Scholar
Kale, V.S., Mishra, S., Baker, V.R., (2003). Sedimentary records of palaeofloods in the bedrock gorges of the Tapi and Narmada rivers, central India. Current Science 84, 10721079.Google Scholar
Krull, E.S., Bestland, E.A., Gates, W.P., (2002). Soil organic matter decomposition and turnover in a tropical Ultisol: evidence from δ13C, δ15N and geochemistry. Radiocarbon 44, 93112.Google Scholar
Kumar, R., Suresh, N., Sangode, S.J., Kumaravel, V., (2007). Evolution of the Quaternary alluvial fan system in the Himalayan foreland basin: implications for tectonic and climatic decoupling. Quaternary International 159, 620.Google Scholar
Murray, A.S., Wintle, A.G., (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose procedure. Radiation Measurements 32, 5773.Google Scholar
Murray, A.S., Wintle, A.G., (2003). The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.Google Scholar
Nadelhoffer, K.J., Fry, B., (1988). Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal 52, 16331640.Google Scholar
Osborne, C.P., Beerling, D.J., (2006). Nature's green revolution: the remarkable evolutionary rise of C4 plants. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 361, 173194.Google Scholar
Overpeck, J., Anderson, D., Trumbore, S., Prell, W., (1996). The southwest Indian Monsoon over the last 18,000 years. Climate Dynamics 12, 213225.Google Scholar
Pagani, M., Freeman, K.H., Arthur, M.A., (1999). Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876879.Google Scholar
Pagani, M., Zachos, J.C., Freeman, K.H., Tipple, B., Bohaty, S., (2005). Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600603.Google Scholar
Prell, W.L., Kutzbach, J.E., (1987). Monsoon variability over the past 150,000 years. Journal of Geophysical Research 92, 84118425.Google Scholar
Prell, W.L., Van Campo, E., (1986). Coherent response of Arabian Sea upwelling and pollen transport to late Quaternary monsoonal winds. Nature 323, 526528.Google Scholar
Ritter, J.B., Miller, J.R., Enzel, Y., Wells, S.G., (1995). Reconciling the roles of tectonism and climate in Quaternary alluvial fan evolution. Geology 23, 245248.Google Scholar
Salomons, W., Goudie, A., Mook, W.G., (1978). Isotopic composition of calcrete deposit from Europe, Africa and India. Earth Surface Process 3, 4357.Google Scholar
Sangode, S.J., Bloemendal, J., (2005). Pedogenic transformation of magnetic minerals in Pliocene–Pleistocene palaeosols of the Siwalik Group, NW Himalaya, India. Palaeogeography Palaeoclimatology Palaeoecology 212, 95118.Google Scholar
Sanyal, P., Bhattacharya, S.K., Kumar, R., Ghosh, S.K., Sangode, S.J., (2004). Mio-Pliocene monsoonal record from Himalayan Foreland Basin (Indian Siwalik) and its relation to vegetational change. Palaeogeography Palaeoclimatology Palaeoecology 205, 2341.Google Scholar
Sanyal, P., Bhattacharya, S.K., Kumar, R., Ghosh, S.K., Sangode, S.J., (2005). Palaeovegetational reconstruction in late Miocene: a case study based on early diagenetic carbonate cement from the Indian Siwalik. Palaeogeography Palaeoclimatology Palaeoecology 228, 245259.Google Scholar
Sanyal, P., Sarkar, A., Bhattacharya, S.K., Kumar, R., Ghosh, S.K., Agrawal, S., (2010). Phased intensification of monsoon, microclimate and asynchronous C4 appearance: isotopic evidence from the Indian Siwalik sediments. Palaeogeography Palaeoclimatology Palaeoecology 296, 165173.Google Scholar
Sarkar, A., Ramesh, R., Somayajulu, B.L.K., Agnihotri, R., Jull, A.J.T., Burr, G.S., (2000). High resolution Holocene monsoon record from the eastern Arabian Sea. Earth and Planetary Science Letters 177, 209218.Google Scholar
Sarkar, A., Sengupta, S., McArthur, J.M., Ravenscroft, P., Bera, M.K., Bhushan, R., Samanta, A., Agrawal, S., (2009). Evolution of Ganges-Brahmaputra western delta plain: clues from sedimentology and carbon isotope. Quaternary Science Reviews 28, 25642581.Google Scholar
Singh, R.L., (1994). India: A Regional Geography. National Geographical Society of India, Varanasi.Google Scholar
Singhvi, A.K., Banerjee, D., Ramesh, R., Rajaguru, S.N., Gogte, V., (1996). A luminescence method for dating ‘dirty’ pedogenic carbonates for paleoenvironmental reconstruction. Earth and Planetary Science Letters 139, 321332.Google Scholar
Sinha, R., Tandon, S.K., Sanyal, P., Gibling, M.R., Stuben, D., Berner, Z., Ghazanfari, P., (2006). Calcretes from a monsoon-dominated late Quaternary interfluve in the Southern Ganga Plains: isotopic data and palaeoenvironmental implications. Palaeogeography Palaeoclimatology Palaeoecology 242, 214239.Google Scholar
Sinha, R., Bhattacharjee, P., Sangode, S.J., Gibling, M.R., Tandon, S.K., Jain, M., Godfrey, D., (2007). Valley and interfluve sediments in the southern Ganga plains, India: exploring facies and magnetic signatures. Sedimentary Geology 201, 386411.CrossRefGoogle Scholar
Srivastava, P., Juyal, N., Singhvi, A.K., Wasson, R.J., Bateman, M.D., (2001). Luminescence chronology of river adjustment and incision of Quaternary sediments in the alluvial plain of the Sabarmati river, north Gujarat, India. Geomorphology 36, 217229.Google Scholar
Srivastava, P., Singh, I.B., Sharma, M., Singhvi, A.K., (2003). Luminescence chronometry and late Quaternary geomorphic history of the Ganga Plain, India. Palaeogeography Palaeoclimatology Palaeoecology 197, 1541.Google Scholar
Talbot, M.R., (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology 80, 261279.Google Scholar
Tandon, S.K., Sareen, B.K., Someshwar Rao, M., Singhvi, A.K., (1997). Aggradation history and luminescence chronology of the Sabarmati basin, Gujarat, Western India. Palaeogeography Palaeoclimatology Palaeoecology 128, 339357.CrossRefGoogle Scholar
Wang, H., Follmer, R.L., (1998). Proxy of monsoon seasonality in carbon isotopes from paleosols of the southern Chinese Loess Plateau. Geology 26, 987990.Google Scholar
Wasson, R.J., Rajaguru, S.N., Misra, V.N., Agrawal, D.P., Dhir, R.P., Singhvi, A.K., Rao, K.K., (1983). Geomorphology, late Quaternary stratigraphy and paleoclimatology of the Thar dune field. Zeitschrift für Geomorphologie 45, 117151.Google Scholar
Wedin, D.A., Tieszen, L.L., Dewey, B., Pastor, J., (1995). Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76, 13831392.CrossRefGoogle Scholar
Williams, M.A.J., Pal, J.N., Jaiswal, M., Singhvi, A.K., (2006). River response to Quaternary climatic fluctuations: evidence from the Son and Belan valleys, north-central India. Quaternary Science Reviews 25, 26192631.CrossRefGoogle Scholar
Wright, J.D., (2000). Global Climate Change in Marine Stable Isotope Records. American Geophysical Union, .Google Scholar
Wynn, J.G., Bird, M.I., (2007). C4-derived soil organic carbon decomposes faster than its C3 counterpart. Global Change Biology 13, 22062217.CrossRefGoogle Scholar
Yurtsever, Y., Gat, J.R., (1981). Atmospheric waters. In stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Technical Report Series, IAEA, Vienna 210, 103142.Google Scholar
Zhaoyan, G., Qiang, L., Bing, X., Jiamao, H., Shiling, Y., Zhongli, D., Tungsheng, L., (2003). Climate as the dominant control on C3 and C4 plant abundance in the Loess Plateau: organic carbon isotope evidence from the last glacial–interglacial loess-soil sequences. Chinese Science Bulletin 48, 12711276.Google Scholar
Supplementary material: PDF

Agrawal et al. Supplementary Material

Supplementary Material

Download Agrawal et al. Supplementary Material(PDF)
PDF 400.6 KB